Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896540728> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2896540728 abstract "Many real-world machine learning applications face a common problem: the occurrence of missing data due to losses or failures in the collection mechanisms. This article presents a new approach to deal with problems in which the data is missing completely at random (MCAR) or missing at random (MAR). This approach is based on an extension of the INFGMN (Incremental Neuro-Fuzzy Gaussian Mixture Network), using an approximated incremental version of the Expectation Maximization (EM) algorithm, to carry out the imputation process of the missing data during the execution of the recalling operation in the network layer of the INFGMN, making it capable of dealing with missing data. By adding the imputation mechanism to the INFGMN network, we obtained a neuro-fuzzy network that can produce reasonable estimates based on few training data, even in the occurrence of missing data. Unlike other neuro-fuzzy networks, the INFGMN neuro-fuzzy network does not require that the missing data be filled in prior to training and network use (this is done during its use and adaptively). The learning and modeling performance of the INFGMN in the presence of missing data are evaluated using several benchmark applications and we conclude that the proposed model can be used as a viable alternative to the existing ones for the data imputation." @default.
- W2896540728 created "2018-10-26" @default.
- W2896540728 creator A5030914356 @default.
- W2896540728 creator A5045104331 @default.
- W2896540728 creator A5090517396 @default.
- W2896540728 date "2018-07-01" @default.
- W2896540728 modified "2023-09-25" @default.
- W2896540728 title "Adaptive Missing Data Imputation with Incremental Neuro-Fuzzy Gaussian Mixture Network (INFGMN)" @default.
- W2896540728 cites W1964888768 @default.
- W2896540728 cites W1973721774 @default.
- W2896540728 cites W1981982250 @default.
- W2896540728 cites W2001414605 @default.
- W2896540728 cites W2066046820 @default.
- W2896540728 cites W2083143867 @default.
- W2896540728 cites W2102930880 @default.
- W2896540728 cites W2167546040 @default.
- W2896540728 cites W2193720533 @default.
- W2896540728 cites W2738104619 @default.
- W2896540728 cites W4300187280 @default.
- W2896540728 doi "https://doi.org/10.1109/ijcnn.2018.8489515" @default.
- W2896540728 hasPublicationYear "2018" @default.
- W2896540728 type Work @default.
- W2896540728 sameAs 2896540728 @default.
- W2896540728 citedByCount "2" @default.
- W2896540728 countsByYear W28965407282019 @default.
- W2896540728 countsByYear W28965407282021 @default.
- W2896540728 crossrefType "proceedings-article" @default.
- W2896540728 hasAuthorship W2896540728A5030914356 @default.
- W2896540728 hasAuthorship W2896540728A5045104331 @default.
- W2896540728 hasAuthorship W2896540728A5090517396 @default.
- W2896540728 hasConcept C119857082 @default.
- W2896540728 hasConcept C121332964 @default.
- W2896540728 hasConcept C124101348 @default.
- W2896540728 hasConcept C153180895 @default.
- W2896540728 hasConcept C154945302 @default.
- W2896540728 hasConcept C163716315 @default.
- W2896540728 hasConcept C186108316 @default.
- W2896540728 hasConcept C195975749 @default.
- W2896540728 hasConcept C29470771 @default.
- W2896540728 hasConcept C41008148 @default.
- W2896540728 hasConcept C58041806 @default.
- W2896540728 hasConcept C58166 @default.
- W2896540728 hasConcept C61326573 @default.
- W2896540728 hasConcept C62520636 @default.
- W2896540728 hasConcept C9357733 @default.
- W2896540728 hasConceptScore W2896540728C119857082 @default.
- W2896540728 hasConceptScore W2896540728C121332964 @default.
- W2896540728 hasConceptScore W2896540728C124101348 @default.
- W2896540728 hasConceptScore W2896540728C153180895 @default.
- W2896540728 hasConceptScore W2896540728C154945302 @default.
- W2896540728 hasConceptScore W2896540728C163716315 @default.
- W2896540728 hasConceptScore W2896540728C186108316 @default.
- W2896540728 hasConceptScore W2896540728C195975749 @default.
- W2896540728 hasConceptScore W2896540728C29470771 @default.
- W2896540728 hasConceptScore W2896540728C41008148 @default.
- W2896540728 hasConceptScore W2896540728C58041806 @default.
- W2896540728 hasConceptScore W2896540728C58166 @default.
- W2896540728 hasConceptScore W2896540728C61326573 @default.
- W2896540728 hasConceptScore W2896540728C62520636 @default.
- W2896540728 hasConceptScore W2896540728C9357733 @default.
- W2896540728 hasLocation W28965407281 @default.
- W2896540728 hasOpenAccess W2896540728 @default.
- W2896540728 hasPrimaryLocation W28965407281 @default.
- W2896540728 hasRelatedWork W1493159477 @default.
- W2896540728 hasRelatedWork W1564722938 @default.
- W2896540728 hasRelatedWork W2380160423 @default.
- W2896540728 hasRelatedWork W2541565311 @default.
- W2896540728 hasRelatedWork W2725844947 @default.
- W2896540728 hasRelatedWork W2751555317 @default.
- W2896540728 hasRelatedWork W2896540728 @default.
- W2896540728 hasRelatedWork W2954672461 @default.
- W2896540728 hasRelatedWork W3049453136 @default.
- W2896540728 hasRelatedWork W3125788582 @default.
- W2896540728 isParatext "false" @default.
- W2896540728 isRetracted "false" @default.
- W2896540728 magId "2896540728" @default.
- W2896540728 workType "article" @default.