Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896548991> ?p ?o ?g. }
- W2896548991 abstract "From last few years there are many research works have been done on the field of affect detection or emotion recognition from speech signal. Researchers has been directed to find out different emotional content from speech signals, they have tried to extract different features from speech and used different types of supervised or unsupervised learning methods to train a network such a way that a model can be developed which can identify emotion from speech signal successfully. The primary challenges of emotion recognition are choosing the emotional speech corpus (speech database), identification of different features related to speech and an appropriate choice of a classification model. In this work we have explored RML emotional speech corpus for our experiment purpose it is a collection of emotional audiovisual files of different languages. We have analyzed the performance of Deep Convolutional Neural Network with Mel-Spectrogram as features for recognition of emotion." @default.
- W2896548991 created "2018-10-26" @default.
- W2896548991 creator A5008742866 @default.
- W2896548991 creator A5012300352 @default.
- W2896548991 creator A5022232242 @default.
- W2896548991 date "2017-12-01" @default.
- W2896548991 modified "2023-10-03" @default.
- W2896548991 title "Affect Detection from Speech using Deep Convolutional Neural Network Architecture" @default.
- W2896548991 cites W1538323930 @default.
- W2896548991 cites W1923034539 @default.
- W2896548991 cites W1940245494 @default.
- W2896548991 cites W1994458317 @default.
- W2896548991 cites W2017685870 @default.
- W2896548991 cites W2055911634 @default.
- W2896548991 cites W2059567072 @default.
- W2896548991 cites W2061068689 @default.
- W2896548991 cites W2087618018 @default.
- W2896548991 cites W2096948193 @default.
- W2896548991 cites W2102953093 @default.
- W2896548991 cites W2105172958 @default.
- W2896548991 cites W2118911453 @default.
- W2896548991 cites W2126552487 @default.
- W2896548991 cites W2134554540 @default.
- W2896548991 cites W2137639365 @default.
- W2896548991 cites W2140801466 @default.
- W2896548991 cites W2148822124 @default.
- W2896548991 cites W2188183693 @default.
- W2896548991 cites W2290843208 @default.
- W2896548991 cites W2314395941 @default.
- W2896548991 cites W2556696324 @default.
- W2896548991 cites W2583928400 @default.
- W2896548991 cites W2735746628 @default.
- W2896548991 doi "https://doi.org/10.1109/indicon.2017.8487700" @default.
- W2896548991 hasPublicationYear "2017" @default.
- W2896548991 type Work @default.
- W2896548991 sameAs 2896548991 @default.
- W2896548991 citedByCount "3" @default.
- W2896548991 countsByYear W28965489912019 @default.
- W2896548991 countsByYear W28965489912020 @default.
- W2896548991 countsByYear W28965489912021 @default.
- W2896548991 crossrefType "proceedings-article" @default.
- W2896548991 hasAuthorship W2896548991A5008742866 @default.
- W2896548991 hasAuthorship W2896548991A5012300352 @default.
- W2896548991 hasAuthorship W2896548991A5022232242 @default.
- W2896548991 hasConcept C108583219 @default.
- W2896548991 hasConcept C116834253 @default.
- W2896548991 hasConcept C14999030 @default.
- W2896548991 hasConcept C154945302 @default.
- W2896548991 hasConcept C202444582 @default.
- W2896548991 hasConcept C204201278 @default.
- W2896548991 hasConcept C204321447 @default.
- W2896548991 hasConcept C2777438025 @default.
- W2896548991 hasConcept C28490314 @default.
- W2896548991 hasConcept C2988148770 @default.
- W2896548991 hasConcept C33923547 @default.
- W2896548991 hasConcept C41008148 @default.
- W2896548991 hasConcept C45273575 @default.
- W2896548991 hasConcept C50644808 @default.
- W2896548991 hasConcept C59822182 @default.
- W2896548991 hasConcept C61328038 @default.
- W2896548991 hasConcept C81363708 @default.
- W2896548991 hasConcept C86803240 @default.
- W2896548991 hasConcept C91863865 @default.
- W2896548991 hasConcept C9652623 @default.
- W2896548991 hasConceptScore W2896548991C108583219 @default.
- W2896548991 hasConceptScore W2896548991C116834253 @default.
- W2896548991 hasConceptScore W2896548991C14999030 @default.
- W2896548991 hasConceptScore W2896548991C154945302 @default.
- W2896548991 hasConceptScore W2896548991C202444582 @default.
- W2896548991 hasConceptScore W2896548991C204201278 @default.
- W2896548991 hasConceptScore W2896548991C204321447 @default.
- W2896548991 hasConceptScore W2896548991C2777438025 @default.
- W2896548991 hasConceptScore W2896548991C28490314 @default.
- W2896548991 hasConceptScore W2896548991C2988148770 @default.
- W2896548991 hasConceptScore W2896548991C33923547 @default.
- W2896548991 hasConceptScore W2896548991C41008148 @default.
- W2896548991 hasConceptScore W2896548991C45273575 @default.
- W2896548991 hasConceptScore W2896548991C50644808 @default.
- W2896548991 hasConceptScore W2896548991C59822182 @default.
- W2896548991 hasConceptScore W2896548991C61328038 @default.
- W2896548991 hasConceptScore W2896548991C81363708 @default.
- W2896548991 hasConceptScore W2896548991C86803240 @default.
- W2896548991 hasConceptScore W2896548991C91863865 @default.
- W2896548991 hasConceptScore W2896548991C9652623 @default.
- W2896548991 hasLocation W28965489911 @default.
- W2896548991 hasOpenAccess W2896548991 @default.
- W2896548991 hasPrimaryLocation W28965489911 @default.
- W2896548991 hasRelatedWork W1491803002 @default.
- W2896548991 hasRelatedWork W1576808190 @default.
- W2896548991 hasRelatedWork W1589734697 @default.
- W2896548991 hasRelatedWork W2018302169 @default.
- W2896548991 hasRelatedWork W2033953831 @default.
- W2896548991 hasRelatedWork W2050752817 @default.
- W2896548991 hasRelatedWork W2052020713 @default.
- W2896548991 hasRelatedWork W2071304247 @default.
- W2896548991 hasRelatedWork W2079988864 @default.
- W2896548991 hasRelatedWork W2120364403 @default.
- W2896548991 hasRelatedWork W2302810830 @default.
- W2896548991 hasRelatedWork W2324037684 @default.
- W2896548991 hasRelatedWork W2785763105 @default.