Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896549842> ?p ?o ?g. }
- W2896549842 endingPage "2134" @default.
- W2896549842 startingPage "2120" @default.
- W2896549842 abstract "Purpose To propose a framework for synergistic reconstruction of PET‐MR and multi‐contrast MR data to improve the image quality obtained from noisy PET data and from undersampled MR data. Theory and Methods Weighted quadratic priors were devised to preserve common boundaries between PET‐MR images while reducing noise, PET Gibbs ringing, and MR undersampling artifacts. These priors are iteratively reweighted using normalized multi‐modal Gaussian similarity kernels. Synergistic PET‐MR reconstructions were built on the PET maximum a posteriori expectation maximization algorithm and the MR regularized sensitivity encoding method. The proposed approach was compared to conventional methods, total variation, and prior‐image weighted quadratic regularization methods. Comparisons were performed on a simulated [ 18 F]fluorodeoxyglucose‐PET and T 1 /T 2 ‐weighted MR brain phantom, 2 in vivo T 1 /T 2 ‐weighted MR brain datasets, and an in vivo [ 18 F]fluorodeoxyglucose‐PET and fluid‐attenuated inversion recovery/T 1 ‐weighted MR brain dataset. Results Simulations showed that synergistic reconstructions achieve the lowest quantification errors for all image modalities compared to conventional, total variation, and weighted quadratic methods. Whereas total variation regularization preserved modality‐unique features, this method failed to recover PET details and was not able to reduce MR artifacts compared to our proposed method. For in vivo MR data, our method maintained similar image quality for 3× and 14× accelerated data. Reconstruction of the PET‐MR dataset also demonstrated improved performance of our method compared to the conventional independent methods in terms of reduced Gibbs and undersampling artifacts. Conclusion The proposed methodology offers a robust multi‐modal synergistic image reconstruction framework that can be readily built on existing established algorithms." @default.
- W2896549842 created "2018-10-26" @default.
- W2896549842 creator A5009880092 @default.
- W2896549842 creator A5033247114 @default.
- W2896549842 creator A5035733078 @default.
- W2896549842 creator A5038820846 @default.
- W2896549842 creator A5045287606 @default.
- W2896549842 creator A5069326665 @default.
- W2896549842 creator A5080907554 @default.
- W2896549842 date "2018-10-16" @default.
- W2896549842 modified "2023-10-15" @default.
- W2896549842 title "Multi‐modal synergistic PET and MR reconstruction using mutually weighted quadratic priors" @default.
- W2896549842 cites W1574108106 @default.
- W2896549842 cites W1972898607 @default.
- W2896549842 cites W2017162022 @default.
- W2896549842 cites W2035210052 @default.
- W2896549842 cites W2037922117 @default.
- W2896549842 cites W2099801199 @default.
- W2896549842 cites W2102462706 @default.
- W2896549842 cites W2103011429 @default.
- W2896549842 cites W2107861471 @default.
- W2896549842 cites W2130645492 @default.
- W2896549842 cites W2131658309 @default.
- W2896549842 cites W2134884567 @default.
- W2896549842 cites W2136390628 @default.
- W2896549842 cites W2138075502 @default.
- W2896549842 cites W2142808775 @default.
- W2896549842 cites W2142940228 @default.
- W2896549842 cites W2151354228 @default.
- W2896549842 cites W2156612134 @default.
- W2896549842 cites W2168903001 @default.
- W2896549842 cites W2217151160 @default.
- W2896549842 cites W2347124429 @default.
- W2896549842 cites W2606586359 @default.
- W2896549842 cites W2620613906 @default.
- W2896549842 cites W2886959776 @default.
- W2896549842 cites W3100694778 @default.
- W2896549842 cites W3105315448 @default.
- W2896549842 cites W3121165271 @default.
- W2896549842 cites W4249760698 @default.
- W2896549842 doi "https://doi.org/10.1002/mrm.27521" @default.
- W2896549842 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6563465" @default.
- W2896549842 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30325053" @default.
- W2896549842 hasPublicationYear "2018" @default.
- W2896549842 type Work @default.
- W2896549842 sameAs 2896549842 @default.
- W2896549842 citedByCount "12" @default.
- W2896549842 countsByYear W28965498422018 @default.
- W2896549842 countsByYear W28965498422019 @default.
- W2896549842 countsByYear W28965498422020 @default.
- W2896549842 countsByYear W28965498422021 @default.
- W2896549842 countsByYear W28965498422023 @default.
- W2896549842 crossrefType "journal-article" @default.
- W2896549842 hasAuthorship W2896549842A5009880092 @default.
- W2896549842 hasAuthorship W2896549842A5033247114 @default.
- W2896549842 hasAuthorship W2896549842A5035733078 @default.
- W2896549842 hasAuthorship W2896549842A5038820846 @default.
- W2896549842 hasAuthorship W2896549842A5045287606 @default.
- W2896549842 hasAuthorship W2896549842A5069326665 @default.
- W2896549842 hasAuthorship W2896549842A5080907554 @default.
- W2896549842 hasBestOaLocation W28965498421 @default.
- W2896549842 hasConcept C104293457 @default.
- W2896549842 hasConcept C105795698 @default.
- W2896549842 hasConcept C107673813 @default.
- W2896549842 hasConcept C11413529 @default.
- W2896549842 hasConcept C136536468 @default.
- W2896549842 hasConcept C141379421 @default.
- W2896549842 hasConcept C153180895 @default.
- W2896549842 hasConcept C154945302 @default.
- W2896549842 hasConcept C177769412 @default.
- W2896549842 hasConcept C2776135515 @default.
- W2896549842 hasConcept C2989005 @default.
- W2896549842 hasConcept C33923547 @default.
- W2896549842 hasConcept C41008148 @default.
- W2896549842 hasConcept C49781872 @default.
- W2896549842 hasConcept C71924100 @default.
- W2896549842 hasConcept C9810830 @default.
- W2896549842 hasConceptScore W2896549842C104293457 @default.
- W2896549842 hasConceptScore W2896549842C105795698 @default.
- W2896549842 hasConceptScore W2896549842C107673813 @default.
- W2896549842 hasConceptScore W2896549842C11413529 @default.
- W2896549842 hasConceptScore W2896549842C136536468 @default.
- W2896549842 hasConceptScore W2896549842C141379421 @default.
- W2896549842 hasConceptScore W2896549842C153180895 @default.
- W2896549842 hasConceptScore W2896549842C154945302 @default.
- W2896549842 hasConceptScore W2896549842C177769412 @default.
- W2896549842 hasConceptScore W2896549842C2776135515 @default.
- W2896549842 hasConceptScore W2896549842C2989005 @default.
- W2896549842 hasConceptScore W2896549842C33923547 @default.
- W2896549842 hasConceptScore W2896549842C41008148 @default.
- W2896549842 hasConceptScore W2896549842C49781872 @default.
- W2896549842 hasConceptScore W2896549842C71924100 @default.
- W2896549842 hasConceptScore W2896549842C9810830 @default.
- W2896549842 hasFunder F4320307874 @default.
- W2896549842 hasFunder F4320311196 @default.
- W2896549842 hasFunder F4320334627 @default.
- W2896549842 hasIssue "3" @default.
- W2896549842 hasLocation W28965498421 @default.