Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896554150> ?p ?o ?g. }
- W2896554150 endingPage "996" @default.
- W2896554150 startingPage "975" @default.
- W2896554150 abstract "Abstract Laminar natural convection heat transfer in a power-law fluid from an isothermal rotating cylinder placed coaxially in a square duct has been studied numerically over the following ranges of conditions: Grashof number ( 10 ⩽ Gr ⩽ 10 3 ) ; Prandtl number ( 0.72 ⩽ Pr ⩽ 100 ) ; power-law index ( 0.2 ⩽ n ⩽ 1.5 ) and non-dimensional rotational velocity ( 0 ⩽ S ⩽ 4 ) . The spatial variation of the velocity and temperature fields are visualised in terms of the streamline and isotherm patterns, and temperature and vertical velocity at a few locations, respectively. Indeed, a range of flow patterns including twin-celled and single-celled recirculating regions can be observed depending upon the relative strengths of the buoyancy-induced and forced flow. The rate of heat transfer is described in terms of the distribution of the local Nusselt number over the surface of the cylinder together with its surface averaged value. As expected, the mean Nusselt number shows a positive dependence on the both Grashof and Prandtl numbers irrespective of the values of the power-law index and rotational velocity. For a non-rotating cylinder (S = 0), shear-thinning fluid behaviour promotes heat transfer, whereas shear-thickening viscosity impedes it with reference to that in Newtonian fluids otherwise under identical conditions. For the case of a rotating cylinder ( S ≠ 0 ), the rotation has positive influence on the rate of heat transfer at low values of the Grashof or Rayleigh number ( Ra 500 ) irrespective of the type of fluid behaviour, i.e., shear-thinning or shear-thickening or Newtonian. However, at high values of the Grashof or Rayleigh numbers, the gradual increase of rotation of the cylinder first lowers the rate of heat transfer, and then increases it for shear-thickening (n > 1) and Newtonian fluids (n = 1). On the other hand, a reverse trend is seen for shear-thinning fluids. These non-monotonous trends in the overall heat transfer stem from the interactions between the rate of variation of the fluid viscosity and the temperature gradient on the surface of the cylinder. Therefore, a prudent choice of the operating conditions and the fluid behaviour can be used to regulate the rate of heating or cooling from a rotating cylinder. Finally, the present values of the average Nusselt number are correlated in order to facilitate the interpolation of the present results for the intermediate values of Gr, Pr, S and n and/or the estimation of heat transfer duty in a new application." @default.
- W2896554150 created "2018-10-26" @default.
- W2896554150 creator A5003812190 @default.
- W2896554150 creator A5046337360 @default.
- W2896554150 creator A5082523533 @default.
- W2896554150 date "2019-02-01" @default.
- W2896554150 modified "2023-09-30" @default.
- W2896554150 title "Natural convection heat transfer in a power-law fluid from a heated rotating cylinder in a square duct" @default.
- W2896554150 cites W1212890514 @default.
- W2896554150 cites W1967393812 @default.
- W2896554150 cites W1968538984 @default.
- W2896554150 cites W1973425026 @default.
- W2896554150 cites W1977827320 @default.
- W2896554150 cites W1978116566 @default.
- W2896554150 cites W1978401348 @default.
- W2896554150 cites W1980851071 @default.
- W2896554150 cites W1981853154 @default.
- W2896554150 cites W1981944352 @default.
- W2896554150 cites W1983022234 @default.
- W2896554150 cites W1983600761 @default.
- W2896554150 cites W1985099705 @default.
- W2896554150 cites W1993777568 @default.
- W2896554150 cites W1994522266 @default.
- W2896554150 cites W2002898304 @default.
- W2896554150 cites W2003080547 @default.
- W2896554150 cites W2006534936 @default.
- W2896554150 cites W2010564271 @default.
- W2896554150 cites W2016443083 @default.
- W2896554150 cites W2022230833 @default.
- W2896554150 cites W2023228841 @default.
- W2896554150 cites W2033422469 @default.
- W2896554150 cites W2040417582 @default.
- W2896554150 cites W2040986341 @default.
- W2896554150 cites W2050699242 @default.
- W2896554150 cites W2051679057 @default.
- W2896554150 cites W2052924732 @default.
- W2896554150 cites W2053262849 @default.
- W2896554150 cites W2057870699 @default.
- W2896554150 cites W2061007991 @default.
- W2896554150 cites W2061545416 @default.
- W2896554150 cites W2073416769 @default.
- W2896554150 cites W2083166418 @default.
- W2896554150 cites W2083639166 @default.
- W2896554150 cites W2159873580 @default.
- W2896554150 cites W2165235817 @default.
- W2896554150 cites W2195947402 @default.
- W2896554150 cites W2282705370 @default.
- W2896554150 cites W2320983274 @default.
- W2896554150 cites W2375551041 @default.
- W2896554150 cites W2398981553 @default.
- W2896554150 cites W2564833745 @default.
- W2896554150 cites W2585275980 @default.
- W2896554150 cites W2625420264 @default.
- W2896554150 cites W2761651832 @default.
- W2896554150 cites W2766333644 @default.
- W2896554150 cites W2779145949 @default.
- W2896554150 cites W2782200903 @default.
- W2896554150 cites W2782540314 @default.
- W2896554150 cites W2783321555 @default.
- W2896554150 cites W2792036778 @default.
- W2896554150 cites W2792747104 @default.
- W2896554150 cites W2868859086 @default.
- W2896554150 cites W4247658698 @default.
- W2896554150 cites W991093656 @default.
- W2896554150 doi "https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.007" @default.
- W2896554150 hasPublicationYear "2019" @default.
- W2896554150 type Work @default.
- W2896554150 sameAs 2896554150 @default.
- W2896554150 citedByCount "21" @default.
- W2896554150 countsByYear W28965541502019 @default.
- W2896554150 countsByYear W28965541502020 @default.
- W2896554150 countsByYear W28965541502021 @default.
- W2896554150 countsByYear W28965541502022 @default.
- W2896554150 countsByYear W28965541502023 @default.
- W2896554150 crossrefType "journal-article" @default.
- W2896554150 hasAuthorship W2896554150A5003812190 @default.
- W2896554150 hasAuthorship W2896554150A5046337360 @default.
- W2896554150 hasAuthorship W2896554150A5082523533 @default.
- W2896554150 hasConcept C105702510 @default.
- W2896554150 hasConcept C121332964 @default.
- W2896554150 hasConcept C135692309 @default.
- W2896554150 hasConcept C192562407 @default.
- W2896554150 hasConcept C203311528 @default.
- W2896554150 hasConcept C2524010 @default.
- W2896554150 hasConcept C2781212128 @default.
- W2896554150 hasConcept C33923547 @default.
- W2896554150 hasConcept C47681835 @default.
- W2896554150 hasConcept C50517652 @default.
- W2896554150 hasConcept C54791560 @default.
- W2896554150 hasConcept C57879066 @default.
- W2896554150 hasConcept C71924100 @default.
- W2896554150 hasConcept C84403224 @default.
- W2896554150 hasConcept C97355855 @default.
- W2896554150 hasConceptScore W2896554150C105702510 @default.
- W2896554150 hasConceptScore W2896554150C121332964 @default.
- W2896554150 hasConceptScore W2896554150C135692309 @default.
- W2896554150 hasConceptScore W2896554150C192562407 @default.
- W2896554150 hasConceptScore W2896554150C203311528 @default.