Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896562362> ?p ?o ?g. }
- W2896562362 endingPage "1476" @default.
- W2896562362 startingPage "1468" @default.
- W2896562362 abstract "Fluorescence Molecular Tomography (FMT) is a promising optical tool for small animal imaging. The l1/2-norm regularization has attracted attention in the field of FMT due to its ability in enhancing sparsity of solution and coping with the high ill-posedness of the inverse problem. However, efficient algorithm for solving the nonconvex regularized model deserve to explore.A Half Thresholding Pursuit Algorithm (HTPA) combined with parameter optimization is proposed in this paper to efficiently solve the nonconvex optimization model. Specifically, the half thresholding iteration method is utilized to solve l1/2-norm model, pursuit strategy is used to accelerate the process of iteration, and the parameter optimization scheme is designed to obtain robust parameter.Analysis and assessment on simulated and experimental data demonstrate that the proposed HTPA performs better in location accuracy and reconstructed fluorescent yield in less time cost, compared with the state-of-the-art reconstruction algorithms.The proposed HTPA combined with the parameter optimization scheme is an efficient and robust reconstruction approach to FMT." @default.
- W2896562362 created "2018-10-26" @default.
- W2896562362 creator A5025174368 @default.
- W2896562362 creator A5035067908 @default.
- W2896562362 creator A5037164159 @default.
- W2896562362 creator A5044123947 @default.
- W2896562362 creator A5060690411 @default.
- W2896562362 creator A5083967437 @default.
- W2896562362 creator A5090414812 @default.
- W2896562362 date "2019-05-01" @default.
- W2896562362 modified "2023-10-17" @default.
- W2896562362 title "Half Thresholding Pursuit Algorithm for Fluorescence Molecular Tomography" @default.
- W2896562362 cites W1974607771 @default.
- W2896562362 cites W1977520307 @default.
- W2896562362 cites W1977871291 @default.
- W2896562362 cites W1989541248 @default.
- W2896562362 cites W1990043721 @default.
- W2896562362 cites W1993173822 @default.
- W2896562362 cites W1996085026 @default.
- W2896562362 cites W2002527017 @default.
- W2896562362 cites W2003778635 @default.
- W2896562362 cites W2005369244 @default.
- W2896562362 cites W2017096549 @default.
- W2896562362 cites W2021548844 @default.
- W2896562362 cites W2032547185 @default.
- W2896562362 cites W2033503013 @default.
- W2896562362 cites W2040398563 @default.
- W2896562362 cites W2041891835 @default.
- W2896562362 cites W2042907121 @default.
- W2896562362 cites W2047975126 @default.
- W2896562362 cites W2056201402 @default.
- W2896562362 cites W2057090811 @default.
- W2896562362 cites W2060600570 @default.
- W2896562362 cites W2067203318 @default.
- W2896562362 cites W2074006707 @default.
- W2896562362 cites W2074639335 @default.
- W2896562362 cites W2085873825 @default.
- W2896562362 cites W2097396480 @default.
- W2896562362 cites W2097879622 @default.
- W2896562362 cites W2111202632 @default.
- W2896562362 cites W2122070690 @default.
- W2896562362 cites W2149317552 @default.
- W2896562362 cites W2151904753 @default.
- W2896562362 cites W3022380717 @default.
- W2896562362 doi "https://doi.org/10.1109/tbme.2018.2874699" @default.
- W2896562362 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30296209" @default.
- W2896562362 hasPublicationYear "2019" @default.
- W2896562362 type Work @default.
- W2896562362 sameAs 2896562362 @default.
- W2896562362 citedByCount "20" @default.
- W2896562362 countsByYear W28965623622020 @default.
- W2896562362 countsByYear W28965623622021 @default.
- W2896562362 countsByYear W28965623622022 @default.
- W2896562362 countsByYear W28965623622023 @default.
- W2896562362 crossrefType "journal-article" @default.
- W2896562362 hasAuthorship W2896562362A5025174368 @default.
- W2896562362 hasAuthorship W2896562362A5035067908 @default.
- W2896562362 hasAuthorship W2896562362A5037164159 @default.
- W2896562362 hasAuthorship W2896562362A5044123947 @default.
- W2896562362 hasAuthorship W2896562362A5060690411 @default.
- W2896562362 hasAuthorship W2896562362A5083967437 @default.
- W2896562362 hasAuthorship W2896562362A5090414812 @default.
- W2896562362 hasConcept C104317684 @default.
- W2896562362 hasConcept C11413529 @default.
- W2896562362 hasConcept C115961682 @default.
- W2896562362 hasConcept C120665830 @default.
- W2896562362 hasConcept C121332964 @default.
- W2896562362 hasConcept C126255220 @default.
- W2896562362 hasConcept C134306372 @default.
- W2896562362 hasConcept C135252773 @default.
- W2896562362 hasConcept C137836250 @default.
- W2896562362 hasConcept C141379421 @default.
- W2896562362 hasConcept C154945302 @default.
- W2896562362 hasConcept C163716698 @default.
- W2896562362 hasConcept C17744445 @default.
- W2896562362 hasConcept C185592680 @default.
- W2896562362 hasConcept C191178318 @default.
- W2896562362 hasConcept C191795146 @default.
- W2896562362 hasConcept C199539241 @default.
- W2896562362 hasConcept C2776135515 @default.
- W2896562362 hasConcept C33923547 @default.
- W2896562362 hasConcept C41008148 @default.
- W2896562362 hasConcept C55493867 @default.
- W2896562362 hasConcept C63479239 @default.
- W2896562362 hasConceptScore W2896562362C104317684 @default.
- W2896562362 hasConceptScore W2896562362C11413529 @default.
- W2896562362 hasConceptScore W2896562362C115961682 @default.
- W2896562362 hasConceptScore W2896562362C120665830 @default.
- W2896562362 hasConceptScore W2896562362C121332964 @default.
- W2896562362 hasConceptScore W2896562362C126255220 @default.
- W2896562362 hasConceptScore W2896562362C134306372 @default.
- W2896562362 hasConceptScore W2896562362C135252773 @default.
- W2896562362 hasConceptScore W2896562362C137836250 @default.
- W2896562362 hasConceptScore W2896562362C141379421 @default.
- W2896562362 hasConceptScore W2896562362C154945302 @default.
- W2896562362 hasConceptScore W2896562362C163716698 @default.
- W2896562362 hasConceptScore W2896562362C17744445 @default.
- W2896562362 hasConceptScore W2896562362C185592680 @default.