Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896567510> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W2896567510 abstract "Author(s): Lee, Dajung | Advisor(s): Kastner, Ryan; Nguyen, Truong | Abstract: Creating efficient, accurate approaches to cytometry is an important problem for clinical diagnostics, biological research, and drug discovery. Cytometry identifies cell types or cell status, separates mature cells from immature ones, detects cancerous cells from healthy normal cells, classifies stem cells during differentiation, and screens drugs based upon how they affect cellular architecture. Imaging flow cytometry is especially promising in cytometry research area since this image-based cell analysis system is capable of capturing highly sophisticated contents while achieving high-throughput analysis. Analyzing cellular images quickly and accurately is a non-trivial problem. These images are commonly obtained at the microscopic level and therefore are very sensitive to light, are often plagued by visual ‘noise’, and blur easily. Processing these images is highly data-intensive and computationally demanding. Therefore, even state-of-art approaches can achieve either high-throughput or profile the cell contents, but not both. There have consequently been significant demands for a properly designed algorithmic approach, as well as specialized hardware support for it. This work presents a hardware-accelerated system design for a real-time imaging flow cytometry technique. The main algorithmic approaches in this work are two-folds: 1) morphological feature analysis to describe cellular features and 2) an image segmentation method to classify irregular cell shapes and separate the cellular membrane and nucleus. It first describes a high-throughput and low-latency system design solution for extracting cellular properties from a high frame-rate video. Our system analyzes cell images to understand their mechanical properties, such as shape, size, circularity, or deformability. This work suggests hardware-friendly algorithms and carefully optimized hardware accelerated systems using a reconfigurable hardware, i.e. Field Programmable Gate Arrays (FPGA). Secondly, it describes a streaming data clustering method for image segmentation. Data clustering is commonly used for data analysis but is also a demanding process, even in hardware. The segmentation approach in this work achieves a highly streaming and scalable data clustering solution that runs in the highest throughput in an FPGA while handling high-dimensional data. We evaluate this method and conclude that it outperforms other prior state-of-the-art systems. We generalize our streaming data clustering approach for other clustering problems in various data analysis application domains." @default.
- W2896567510 created "2018-10-26" @default.
- W2896567510 creator A5060929992 @default.
- W2896567510 date "2017-01-01" @default.
- W2896567510 modified "2023-09-27" @default.
- W2896567510 title "Designing Hardware Accelerated Systems for Imaging Flow Cytometry" @default.
- W2896567510 hasPublicationYear "2017" @default.
- W2896567510 type Work @default.
- W2896567510 sameAs 2896567510 @default.
- W2896567510 citedByCount "0" @default.
- W2896567510 crossrefType "journal-article" @default.
- W2896567510 hasAuthorship W2896567510A5060929992 @default.
- W2896567510 hasConcept C154945302 @default.
- W2896567510 hasConcept C157764524 @default.
- W2896567510 hasConcept C2780339063 @default.
- W2896567510 hasConcept C31972630 @default.
- W2896567510 hasConcept C41008148 @default.
- W2896567510 hasConcept C54355233 @default.
- W2896567510 hasConcept C553184892 @default.
- W2896567510 hasConcept C555944384 @default.
- W2896567510 hasConcept C76155785 @default.
- W2896567510 hasConcept C86803240 @default.
- W2896567510 hasConcept C89600930 @default.
- W2896567510 hasConcept C9390403 @default.
- W2896567510 hasConceptScore W2896567510C154945302 @default.
- W2896567510 hasConceptScore W2896567510C157764524 @default.
- W2896567510 hasConceptScore W2896567510C2780339063 @default.
- W2896567510 hasConceptScore W2896567510C31972630 @default.
- W2896567510 hasConceptScore W2896567510C41008148 @default.
- W2896567510 hasConceptScore W2896567510C54355233 @default.
- W2896567510 hasConceptScore W2896567510C553184892 @default.
- W2896567510 hasConceptScore W2896567510C555944384 @default.
- W2896567510 hasConceptScore W2896567510C76155785 @default.
- W2896567510 hasConceptScore W2896567510C86803240 @default.
- W2896567510 hasConceptScore W2896567510C89600930 @default.
- W2896567510 hasConceptScore W2896567510C9390403 @default.
- W2896567510 hasLocation W28965675101 @default.
- W2896567510 hasOpenAccess W2896567510 @default.
- W2896567510 hasPrimaryLocation W28965675101 @default.
- W2896567510 hasRelatedWork W13803455 @default.
- W2896567510 hasRelatedWork W2029379517 @default.
- W2896567510 hasRelatedWork W2052263376 @default.
- W2896567510 hasRelatedWork W2137630069 @default.
- W2896567510 hasRelatedWork W2145703863 @default.
- W2896567510 hasRelatedWork W2588323175 @default.
- W2896567510 hasRelatedWork W2762066471 @default.
- W2896567510 hasRelatedWork W2771678286 @default.
- W2896567510 hasRelatedWork W2788342393 @default.
- W2896567510 hasRelatedWork W28109220 @default.
- W2896567510 hasRelatedWork W2889812370 @default.
- W2896567510 hasRelatedWork W2912704281 @default.
- W2896567510 hasRelatedWork W2977238709 @default.
- W2896567510 hasRelatedWork W3019397678 @default.
- W2896567510 hasRelatedWork W3035686321 @default.
- W2896567510 hasRelatedWork W3046665618 @default.
- W2896567510 hasRelatedWork W3103415979 @default.
- W2896567510 hasRelatedWork W318217815 @default.
- W2896567510 hasRelatedWork W36813694 @default.
- W2896567510 hasRelatedWork W752561478 @default.
- W2896567510 isParatext "false" @default.
- W2896567510 isRetracted "false" @default.
- W2896567510 magId "2896567510" @default.
- W2896567510 workType "article" @default.