Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896568470> ?p ?o ?g. }
- W2896568470 endingPage "163" @default.
- W2896568470 startingPage "143" @default.
- W2896568470 abstract "In the past few years, intelligent structural damage identification algorithms based on machine learning techniques have been developed and obtained considerable attentions worldwide, due to the advantages of reliable analysis and high efficiency. However, the performances of existing machine learning–based damage identification methods are heavily dependent on the selected signatures from raw signals. This will cause the fact that the damage identification method, which is the optimal solution for a specific application, may fail to provide the similar performance on other cases. Besides, the feature extraction is a time-consuming task, which may affect the real-time performance in practical applications. To address these problems, this article proposes a novel method based on deep convolutional neural networks to identify and localise damages of building structures equipped with smart control devices. The proposed deep convolutional neural network is capable of automatically extracting high-level features from raw signals or low-level features and optimally selecting the combination of extracted features via a multi-layer fusion to satisfy any damage identification objective. To evaluate the performance of the proposed deep convolutional neural network method, a five-level benchmark building equipped with adaptive smart isolators subjected to the seismic loading is investigated. The result shows that the proposed method has outstanding generalisation capacity and higher identification accuracy than other commonly used machine learning methods. Accordingly, it is deemed as an ideal and effective method for damage identification of smart structures." @default.
- W2896568470 created "2018-10-26" @default.
- W2896568470 creator A5001578744 @default.
- W2896568470 creator A5059430601 @default.
- W2896568470 creator A5081837032 @default.
- W2896568470 creator A5088874584 @default.
- W2896568470 date "2018-10-08" @default.
- W2896568470 modified "2023-10-16" @default.
- W2896568470 title "A novel deep learning-based method for damage identification of smart building structures" @default.
- W2896568470 cites W1483861691 @default.
- W2896568470 cites W1965093645 @default.
- W2896568470 cites W1967226435 @default.
- W2896568470 cites W1967775139 @default.
- W2896568470 cites W1971370126 @default.
- W2896568470 cites W1990580112 @default.
- W2896568470 cites W1996381916 @default.
- W2896568470 cites W2009586493 @default.
- W2896568470 cites W2009711204 @default.
- W2896568470 cites W2014984356 @default.
- W2896568470 cites W2020141531 @default.
- W2896568470 cites W2030705010 @default.
- W2896568470 cites W2038118900 @default.
- W2896568470 cites W2053916495 @default.
- W2896568470 cites W2063640194 @default.
- W2896568470 cites W2070866209 @default.
- W2896568470 cites W2074127886 @default.
- W2896568470 cites W2074380972 @default.
- W2896568470 cites W2086926922 @default.
- W2896568470 cites W2087618018 @default.
- W2896568470 cites W2094175249 @default.
- W2896568470 cites W2095081218 @default.
- W2896568470 cites W2103088716 @default.
- W2896568470 cites W2144354855 @default.
- W2896568470 cites W2149765849 @default.
- W2896568470 cites W2153600988 @default.
- W2896568470 cites W2168117308 @default.
- W2896568470 cites W2251648569 @default.
- W2896568470 cites W2289499874 @default.
- W2896568470 cites W2291961022 @default.
- W2896568470 cites W2325429473 @default.
- W2896568470 cites W2473982809 @default.
- W2896568470 cites W2483704186 @default.
- W2896568470 cites W2507331156 @default.
- W2896568470 cites W2556345765 @default.
- W2896568470 cites W2572493078 @default.
- W2896568470 cites W2588902562 @default.
- W2896568470 cites W2598457882 @default.
- W2896568470 cites W2606521772 @default.
- W2896568470 cites W2609145024 @default.
- W2896568470 cites W2613993778 @default.
- W2896568470 cites W2625386759 @default.
- W2896568470 cites W2689210627 @default.
- W2896568470 cites W2734981343 @default.
- W2896568470 cites W2744790985 @default.
- W2896568470 cites W2746696139 @default.
- W2896568470 cites W2753746646 @default.
- W2896568470 cites W2756789966 @default.
- W2896568470 cites W2765452836 @default.
- W2896568470 cites W2770619275 @default.
- W2896568470 cites W2587911926 @default.
- W2896568470 doi "https://doi.org/10.1177/1475921718804132" @default.
- W2896568470 hasPublicationYear "2018" @default.
- W2896568470 type Work @default.
- W2896568470 sameAs 2896568470 @default.
- W2896568470 citedByCount "167" @default.
- W2896568470 countsByYear W28965684702019 @default.
- W2896568470 countsByYear W28965684702020 @default.
- W2896568470 countsByYear W28965684702021 @default.
- W2896568470 countsByYear W28965684702022 @default.
- W2896568470 countsByYear W28965684702023 @default.
- W2896568470 crossrefType "journal-article" @default.
- W2896568470 hasAuthorship W2896568470A5001578744 @default.
- W2896568470 hasAuthorship W2896568470A5059430601 @default.
- W2896568470 hasAuthorship W2896568470A5081837032 @default.
- W2896568470 hasAuthorship W2896568470A5088874584 @default.
- W2896568470 hasBestOaLocation W28965684701 @default.
- W2896568470 hasConcept C108583219 @default.
- W2896568470 hasConcept C116834253 @default.
- W2896568470 hasConcept C119857082 @default.
- W2896568470 hasConcept C13280743 @default.
- W2896568470 hasConcept C138885662 @default.
- W2896568470 hasConcept C153180895 @default.
- W2896568470 hasConcept C154945302 @default.
- W2896568470 hasConcept C185798385 @default.
- W2896568470 hasConcept C205649164 @default.
- W2896568470 hasConcept C2776401178 @default.
- W2896568470 hasConcept C41008148 @default.
- W2896568470 hasConcept C41895202 @default.
- W2896568470 hasConcept C50644808 @default.
- W2896568470 hasConcept C52622490 @default.
- W2896568470 hasConcept C59822182 @default.
- W2896568470 hasConcept C81363708 @default.
- W2896568470 hasConcept C86803240 @default.
- W2896568470 hasConceptScore W2896568470C108583219 @default.
- W2896568470 hasConceptScore W2896568470C116834253 @default.
- W2896568470 hasConceptScore W2896568470C119857082 @default.
- W2896568470 hasConceptScore W2896568470C13280743 @default.
- W2896568470 hasConceptScore W2896568470C138885662 @default.