Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896585377> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2896585377 endingPage "309" @default.
- W2896585377 startingPage "293" @default.
- W2896585377 abstract "Stability performance of newly open pit slopes are is affected by many factors, namely, overall complex geological environment, water flow, in situ and induced rock stresses, continuous blasting effects and construction methods. It is therefore important to identify the critical parameters affecting slope stability, as well as their interactions, in order to reduce the associated uncertainty and risk. In this paper, we extend a worldwide open pit slope stability database further and build on the use of an open pit mine slope stability index to predict the stability conditions, coupling Rock Engineering Systems (RES) and artificial neural networks, namely, Back Propagation and Self Organising Maps. The Open Pit Mine Slope Stability Index (OPMSSI) can be computed as a simple weighted sum of ratings for all parameters involved in the RES. The basic device used in the Rock Engineering Systems approach is the Generic Interaction Matrix (GIM). By coding the GIM cause-effect coordinates, relevant cause-effect plots are generated indicating interaction intensity and dominance. We propose the coding of the GIM using scatter plots produced by an unsupervised, trained, self-organising map and a comparison with GIM coding through connection weights resulting from a trained back propagation neural network. Depending on the resulting OPMSSI, the approach informs on low, medium and high susceptibility levels associated with stable status, failure at set of benches or overall slope failure, respectively. Verification of results suggests that OPMSSI, resulting from self-organising maps, appears to be superior to a back propagation algorithm in prediction capacity and that the SOM proves to be an informative knowledge extraction tool." @default.
- W2896585377 created "2018-10-26" @default.
- W2896585377 creator A5061062528 @default.
- W2896585377 creator A5069196588 @default.
- W2896585377 date "2018-11-01" @default.
- W2896585377 modified "2023-09-26" @default.
- W2896585377 title "Integrating Rock Engineering Systems device and Artificial Neural Networks to predict stability conditions in an open pit" @default.
- W2896585377 cites W1498436455 @default.
- W2896585377 cites W1966438880 @default.
- W2896585377 cites W1966452884 @default.
- W2896585377 cites W1988741192 @default.
- W2896585377 cites W2041452796 @default.
- W2896585377 cites W2049438828 @default.
- W2896585377 cites W2050882379 @default.
- W2896585377 cites W2067130442 @default.
- W2896585377 cites W2079810998 @default.
- W2896585377 cites W2110802877 @default.
- W2896585377 cites W2153676374 @default.
- W2896585377 cites W2158698691 @default.
- W2896585377 cites W2163087046 @default.
- W2896585377 cites W2797546258 @default.
- W2896585377 cites W4238179892 @default.
- W2896585377 doi "https://doi.org/10.1016/j.enggeo.2018.10.010" @default.
- W2896585377 hasPublicationYear "2018" @default.
- W2896585377 type Work @default.
- W2896585377 sameAs 2896585377 @default.
- W2896585377 citedByCount "25" @default.
- W2896585377 countsByYear W28965853772019 @default.
- W2896585377 countsByYear W28965853772020 @default.
- W2896585377 countsByYear W28965853772021 @default.
- W2896585377 countsByYear W28965853772022 @default.
- W2896585377 countsByYear W28965853772023 @default.
- W2896585377 crossrefType "journal-article" @default.
- W2896585377 hasAuthorship W2896585377A5061062528 @default.
- W2896585377 hasAuthorship W2896585377A5069196588 @default.
- W2896585377 hasConcept C105795698 @default.
- W2896585377 hasConcept C110069353 @default.
- W2896585377 hasConcept C112972136 @default.
- W2896585377 hasConcept C119857082 @default.
- W2896585377 hasConcept C127313418 @default.
- W2896585377 hasConcept C154945302 @default.
- W2896585377 hasConcept C16674752 @default.
- W2896585377 hasConcept C179518139 @default.
- W2896585377 hasConcept C184977646 @default.
- W2896585377 hasConcept C187320778 @default.
- W2896585377 hasConcept C33923547 @default.
- W2896585377 hasConcept C41008148 @default.
- W2896585377 hasConcept C50644808 @default.
- W2896585377 hasConceptScore W2896585377C105795698 @default.
- W2896585377 hasConceptScore W2896585377C110069353 @default.
- W2896585377 hasConceptScore W2896585377C112972136 @default.
- W2896585377 hasConceptScore W2896585377C119857082 @default.
- W2896585377 hasConceptScore W2896585377C127313418 @default.
- W2896585377 hasConceptScore W2896585377C154945302 @default.
- W2896585377 hasConceptScore W2896585377C16674752 @default.
- W2896585377 hasConceptScore W2896585377C179518139 @default.
- W2896585377 hasConceptScore W2896585377C184977646 @default.
- W2896585377 hasConceptScore W2896585377C187320778 @default.
- W2896585377 hasConceptScore W2896585377C33923547 @default.
- W2896585377 hasConceptScore W2896585377C41008148 @default.
- W2896585377 hasConceptScore W2896585377C50644808 @default.
- W2896585377 hasFunder F4320320671 @default.
- W2896585377 hasLocation W28965853771 @default.
- W2896585377 hasOpenAccess W2896585377 @default.
- W2896585377 hasPrimaryLocation W28965853771 @default.
- W2896585377 hasRelatedWork W1574438696 @default.
- W2896585377 hasRelatedWork W2093594655 @default.
- W2896585377 hasRelatedWork W2339188889 @default.
- W2896585377 hasRelatedWork W2361337342 @default.
- W2896585377 hasRelatedWork W2375855722 @default.
- W2896585377 hasRelatedWork W2382363875 @default.
- W2896585377 hasRelatedWork W2384454768 @default.
- W2896585377 hasRelatedWork W2389703357 @default.
- W2896585377 hasRelatedWork W4363675207 @default.
- W2896585377 hasRelatedWork W4385249154 @default.
- W2896585377 hasVolume "246" @default.
- W2896585377 isParatext "false" @default.
- W2896585377 isRetracted "false" @default.
- W2896585377 magId "2896585377" @default.
- W2896585377 workType "article" @default.