Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896596421> ?p ?o ?g. }
- W2896596421 endingPage "62" @default.
- W2896596421 startingPage "54" @default.
- W2896596421 abstract "Powerful data pretreatment strategies inspired from the field of metabolomics were adapted to chemical food safety context to enable samples discrimination by multivariate methods based on low abundance ions. A highly automated workflow was produced. The open-source XCMS package was used and efficient data filtration strategies were set up. Data were treated using Independent Components Analysis, and data mining strategies developed to automatically detect and annotate ions of low abundance by coupling blind data exploration strategies with a broad scale database approach. Our method was efficient in discriminating tea samples based on their contamination levels (even at 10 µg.kg−1) and detecting unexpected impurities in the spiking mix. Several “tracer” contaminants were considered, covering a broad range of physicochemical properties and structural diversity with overall 66% detected and annotated blindly. The methodology was successfully applied to a data set exhibiting only 3 “tracer” contaminants (at 50 µg.kg−1) and more product diversity." @default.
- W2896596421 created "2018-10-26" @default.
- W2896596421 creator A5000992121 @default.
- W2896596421 creator A5006365527 @default.
- W2896596421 creator A5015410748 @default.
- W2896596421 creator A5078277981 @default.
- W2896596421 date "2019-03-01" @default.
- W2896596421 modified "2023-09-25" @default.
- W2896596421 title "Untargeted food contaminant detection using UHPLC-HRMS combined with multivariate analysis: Feasibility study on tea" @default.
- W2896596421 cites W1264092346 @default.
- W2896596421 cites W1611854178 @default.
- W2896596421 cites W1948578048 @default.
- W2896596421 cites W1964010911 @default.
- W2896596421 cites W1967747335 @default.
- W2896596421 cites W1971984892 @default.
- W2896596421 cites W1977559038 @default.
- W2896596421 cites W1984647297 @default.
- W2896596421 cites W1988966611 @default.
- W2896596421 cites W1995782945 @default.
- W2896596421 cites W2030831716 @default.
- W2896596421 cites W2033943142 @default.
- W2896596421 cites W2036595331 @default.
- W2896596421 cites W2043200125 @default.
- W2896596421 cites W2051814417 @default.
- W2896596421 cites W2069928158 @default.
- W2896596421 cites W2070395051 @default.
- W2896596421 cites W2073939393 @default.
- W2896596421 cites W2080046774 @default.
- W2896596421 cites W2081465448 @default.
- W2896596421 cites W2083637865 @default.
- W2896596421 cites W2103879066 @default.
- W2896596421 cites W2108363628 @default.
- W2896596421 cites W2149309843 @default.
- W2896596421 cites W2168590651 @default.
- W2896596421 cites W2234766290 @default.
- W2896596421 cites W2289913428 @default.
- W2896596421 cites W2290848280 @default.
- W2896596421 cites W2296804791 @default.
- W2896596421 cites W2296877449 @default.
- W2896596421 cites W2322284525 @default.
- W2896596421 cites W2334902030 @default.
- W2896596421 cites W2341820027 @default.
- W2896596421 cites W2526867374 @default.
- W2896596421 cites W2552203225 @default.
- W2896596421 cites W2617927997 @default.
- W2896596421 cites W2751527649 @default.
- W2896596421 cites W2770571241 @default.
- W2896596421 doi "https://doi.org/10.1016/j.foodchem.2018.10.089" @default.
- W2896596421 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30502182" @default.
- W2896596421 hasPublicationYear "2019" @default.
- W2896596421 type Work @default.
- W2896596421 sameAs 2896596421 @default.
- W2896596421 citedByCount "29" @default.
- W2896596421 countsByYear W28965964212019 @default.
- W2896596421 countsByYear W28965964212020 @default.
- W2896596421 countsByYear W28965964212021 @default.
- W2896596421 countsByYear W28965964212022 @default.
- W2896596421 countsByYear W28965964212023 @default.
- W2896596421 crossrefType "journal-article" @default.
- W2896596421 hasAuthorship W2896596421A5000992121 @default.
- W2896596421 hasAuthorship W2896596421A5006365527 @default.
- W2896596421 hasAuthorship W2896596421A5015410748 @default.
- W2896596421 hasAuthorship W2896596421A5078277981 @default.
- W2896596421 hasBestOaLocation W28965964212 @default.
- W2896596421 hasConcept C107872376 @default.
- W2896596421 hasConcept C112570922 @default.
- W2896596421 hasConcept C119857082 @default.
- W2896596421 hasConcept C121332964 @default.
- W2896596421 hasConcept C124101348 @default.
- W2896596421 hasConcept C151730666 @default.
- W2896596421 hasConcept C154945302 @default.
- W2896596421 hasConcept C161584116 @default.
- W2896596421 hasConcept C177212765 @default.
- W2896596421 hasConcept C185544564 @default.
- W2896596421 hasConcept C185592680 @default.
- W2896596421 hasConcept C18903297 @default.
- W2896596421 hasConcept C2778863792 @default.
- W2896596421 hasConcept C2779343474 @default.
- W2896596421 hasConcept C41008148 @default.
- W2896596421 hasConcept C58489278 @default.
- W2896596421 hasConcept C77088390 @default.
- W2896596421 hasConcept C86803240 @default.
- W2896596421 hasConceptScore W2896596421C107872376 @default.
- W2896596421 hasConceptScore W2896596421C112570922 @default.
- W2896596421 hasConceptScore W2896596421C119857082 @default.
- W2896596421 hasConceptScore W2896596421C121332964 @default.
- W2896596421 hasConceptScore W2896596421C124101348 @default.
- W2896596421 hasConceptScore W2896596421C151730666 @default.
- W2896596421 hasConceptScore W2896596421C154945302 @default.
- W2896596421 hasConceptScore W2896596421C161584116 @default.
- W2896596421 hasConceptScore W2896596421C177212765 @default.
- W2896596421 hasConceptScore W2896596421C185544564 @default.
- W2896596421 hasConceptScore W2896596421C185592680 @default.
- W2896596421 hasConceptScore W2896596421C18903297 @default.
- W2896596421 hasConceptScore W2896596421C2778863792 @default.
- W2896596421 hasConceptScore W2896596421C2779343474 @default.
- W2896596421 hasConceptScore W2896596421C41008148 @default.
- W2896596421 hasConceptScore W2896596421C58489278 @default.