Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896596435> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2896596435 abstract "A new algorithm was proposed in this paper. Based on the principle that the single model prediction results with small errors accounted for a large proportion of the combined results, the BP neural network and the Autoregressive Moving Average (ARMA) Model were improved and combined to form a new combined model algorithm (NEW ARMA-BP) to predict PV output to get more accurate predictions. Taking the output power collected by a 30 MW photovoltaic power plant as an input sample, based on the ARMA algorithm and BP neural network, these two prediction models were built in sequence under the Matlab environment to predict the short-term PV output. Using the “normal test chart of error” in probability theory, we judged that the prediction error level based on the BP neural network was closer to the normal distribution, indicating that the prediction was more accurate. Based on the prediction errors of the ARMA algorithm and BP neural network algorithm, new methods were used to calculate the weights, and the prediction results were recombined based on the weights to obtain new prediction values. Finally, based on the three kinds of error assessment indicators and Pearson coefficient, the error levels of NEW ARMA-BP algorithm and uni-prediction model were compared to verify the applicability of the combined forecast in the field of PV output prediction." @default.
- W2896596435 created "2018-10-26" @default.
- W2896596435 creator A5013946815 @default.
- W2896596435 creator A5028665048 @default.
- W2896596435 creator A5029462231 @default.
- W2896596435 creator A5049331362 @default.
- W2896596435 creator A5057817277 @default.
- W2896596435 date "2018-08-01" @default.
- W2896596435 modified "2023-09-25" @default.
- W2896596435 title "A New Improved Combined Model Algorithm for the Application of Photovoltaic Power Prediction" @default.
- W2896596435 doi "https://doi.org/10.1109/icma.2018.8484377" @default.
- W2896596435 hasPublicationYear "2018" @default.
- W2896596435 type Work @default.
- W2896596435 sameAs 2896596435 @default.
- W2896596435 citedByCount "1" @default.
- W2896596435 countsByYear W28965964352022 @default.
- W2896596435 crossrefType "proceedings-article" @default.
- W2896596435 hasAuthorship W2896596435A5013946815 @default.
- W2896596435 hasAuthorship W2896596435A5028665048 @default.
- W2896596435 hasAuthorship W2896596435A5029462231 @default.
- W2896596435 hasAuthorship W2896596435A5049331362 @default.
- W2896596435 hasAuthorship W2896596435A5057817277 @default.
- W2896596435 hasConcept C105795698 @default.
- W2896596435 hasConcept C111919701 @default.
- W2896596435 hasConcept C11413529 @default.
- W2896596435 hasConcept C119599485 @default.
- W2896596435 hasConcept C121332964 @default.
- W2896596435 hasConcept C127413603 @default.
- W2896596435 hasConcept C154945302 @default.
- W2896596435 hasConcept C159877910 @default.
- W2896596435 hasConcept C163258240 @default.
- W2896596435 hasConcept C2780365114 @default.
- W2896596435 hasConcept C33923547 @default.
- W2896596435 hasConcept C41008148 @default.
- W2896596435 hasConcept C41291067 @default.
- W2896596435 hasConcept C50644808 @default.
- W2896596435 hasConcept C62520636 @default.
- W2896596435 hasConcept C74883015 @default.
- W2896596435 hasConceptScore W2896596435C105795698 @default.
- W2896596435 hasConceptScore W2896596435C111919701 @default.
- W2896596435 hasConceptScore W2896596435C11413529 @default.
- W2896596435 hasConceptScore W2896596435C119599485 @default.
- W2896596435 hasConceptScore W2896596435C121332964 @default.
- W2896596435 hasConceptScore W2896596435C127413603 @default.
- W2896596435 hasConceptScore W2896596435C154945302 @default.
- W2896596435 hasConceptScore W2896596435C159877910 @default.
- W2896596435 hasConceptScore W2896596435C163258240 @default.
- W2896596435 hasConceptScore W2896596435C2780365114 @default.
- W2896596435 hasConceptScore W2896596435C33923547 @default.
- W2896596435 hasConceptScore W2896596435C41008148 @default.
- W2896596435 hasConceptScore W2896596435C41291067 @default.
- W2896596435 hasConceptScore W2896596435C50644808 @default.
- W2896596435 hasConceptScore W2896596435C62520636 @default.
- W2896596435 hasConceptScore W2896596435C74883015 @default.
- W2896596435 hasLocation W28965964351 @default.
- W2896596435 hasOpenAccess W2896596435 @default.
- W2896596435 hasPrimaryLocation W28965964351 @default.
- W2896596435 hasRelatedWork W2057623054 @default.
- W2896596435 hasRelatedWork W2371447506 @default.
- W2896596435 hasRelatedWork W2386767533 @default.
- W2896596435 hasRelatedWork W2617653766 @default.
- W2896596435 hasRelatedWork W2748952813 @default.
- W2896596435 hasRelatedWork W2772773328 @default.
- W2896596435 hasRelatedWork W2901426846 @default.
- W2896596435 hasRelatedWork W4225508530 @default.
- W2896596435 hasRelatedWork W4281771989 @default.
- W2896596435 hasRelatedWork W616432452 @default.
- W2896596435 isParatext "false" @default.
- W2896596435 isRetracted "false" @default.
- W2896596435 magId "2896596435" @default.
- W2896596435 workType "article" @default.