Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896597662> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2896597662 abstract "As one of the most popular social online games of the electronic, DOTA2 (Defense of the Ancients 2) has attracted numerous players all over the world. How to automatically predict the winner of two teams before battle becomes an interesting and practical topic. Since Deep Learning has achieved great success in various classification and prediction tasks of artificial intelligence area, this work exploits Recurrent Neural Network (RNN) to train a winner predictor of DOTA2 game with two battle teams by leveraging the information of massive team rankings and post-match data of teams. Specifically, to model the sequence of previous match data well, we propose an effective Two-stream Match-Recurrent Neural Networks equipped with a new Dota Loss layer (Called DotaNet). In DotaNet, the input features of a battle team pair (i.e., Team A and Team B) are collected and quantified from their available team rankings and post-match data, followed by two sub-RNNs (e.g., GRU or LSTM). Second, the two hidden states of the team pairs from two sub-RNN are fed into a new Dota Loss layer, which outputs the winning probability of Team A vs Team B. In experiments, we collect a new DOTA2 Game Prediction (DGP) dataset from the available team rankings and post-match data, and evaluate the prediction performance of the proposed method compared with the traditional deep learning methods." @default.
- W2896597662 created "2018-10-26" @default.
- W2896597662 creator A5001360858 @default.
- W2896597662 creator A5035112538 @default.
- W2896597662 creator A5040437528 @default.
- W2896597662 date "2018-09-01" @default.
- W2896597662 modified "2023-10-11" @default.
- W2896597662 title "DotaNet: Two-Stream Match-Recurrent Neural Networks for Predicting Social Game Result" @default.
- W2896597662 cites W1008770268 @default.
- W2896597662 cites W1772300941 @default.
- W2896597662 cites W2050398567 @default.
- W2896597662 cites W2068702043 @default.
- W2896597662 cites W2084028080 @default.
- W2896597662 cites W2095705004 @default.
- W2896597662 cites W2109802089 @default.
- W2896597662 cites W2145094598 @default.
- W2896597662 cites W2157127400 @default.
- W2896597662 cites W2157331557 @default.
- W2896597662 cites W2401154299 @default.
- W2896597662 cites W2471933213 @default.
- W2896597662 cites W2512563520 @default.
- W2896597662 cites W2519936666 @default.
- W2896597662 cites W2526050071 @default.
- W2896597662 cites W2552639984 @default.
- W2896597662 cites W2607323999 @default.
- W2896597662 cites W2614580201 @default.
- W2896597662 cites W2622336829 @default.
- W2896597662 cites W2792345332 @default.
- W2896597662 cites W2919115771 @default.
- W2896597662 cites W3103850820 @default.
- W2896597662 doi "https://doi.org/10.1109/bigmm.2018.8499076" @default.
- W2896597662 hasPublicationYear "2018" @default.
- W2896597662 type Work @default.
- W2896597662 sameAs 2896597662 @default.
- W2896597662 citedByCount "3" @default.
- W2896597662 countsByYear W28965976622019 @default.
- W2896597662 countsByYear W28965976622021 @default.
- W2896597662 crossrefType "proceedings-article" @default.
- W2896597662 hasAuthorship W2896597662A5001360858 @default.
- W2896597662 hasAuthorship W2896597662A5035112538 @default.
- W2896597662 hasAuthorship W2896597662A5040437528 @default.
- W2896597662 hasConcept C108583219 @default.
- W2896597662 hasConcept C119857082 @default.
- W2896597662 hasConcept C147168706 @default.
- W2896597662 hasConcept C154945302 @default.
- W2896597662 hasConcept C166957645 @default.
- W2896597662 hasConcept C178790620 @default.
- W2896597662 hasConcept C185592680 @default.
- W2896597662 hasConcept C2778112365 @default.
- W2896597662 hasConcept C2778627824 @default.
- W2896597662 hasConcept C2779227376 @default.
- W2896597662 hasConcept C41008148 @default.
- W2896597662 hasConcept C50644808 @default.
- W2896597662 hasConcept C54355233 @default.
- W2896597662 hasConcept C86803240 @default.
- W2896597662 hasConcept C95457728 @default.
- W2896597662 hasConceptScore W2896597662C108583219 @default.
- W2896597662 hasConceptScore W2896597662C119857082 @default.
- W2896597662 hasConceptScore W2896597662C147168706 @default.
- W2896597662 hasConceptScore W2896597662C154945302 @default.
- W2896597662 hasConceptScore W2896597662C166957645 @default.
- W2896597662 hasConceptScore W2896597662C178790620 @default.
- W2896597662 hasConceptScore W2896597662C185592680 @default.
- W2896597662 hasConceptScore W2896597662C2778112365 @default.
- W2896597662 hasConceptScore W2896597662C2778627824 @default.
- W2896597662 hasConceptScore W2896597662C2779227376 @default.
- W2896597662 hasConceptScore W2896597662C41008148 @default.
- W2896597662 hasConceptScore W2896597662C50644808 @default.
- W2896597662 hasConceptScore W2896597662C54355233 @default.
- W2896597662 hasConceptScore W2896597662C86803240 @default.
- W2896597662 hasConceptScore W2896597662C95457728 @default.
- W2896597662 hasLocation W28965976621 @default.
- W2896597662 hasOpenAccess W2896597662 @default.
- W2896597662 hasPrimaryLocation W28965976621 @default.
- W2896597662 hasRelatedWork W2793022090 @default.
- W2896597662 hasRelatedWork W2885245002 @default.
- W2896597662 hasRelatedWork W2919358988 @default.
- W2896597662 hasRelatedWork W3115610572 @default.
- W2896597662 hasRelatedWork W4200442073 @default.
- W2896597662 hasRelatedWork W4205256556 @default.
- W2896597662 hasRelatedWork W4213142596 @default.
- W2896597662 hasRelatedWork W4254256218 @default.
- W2896597662 hasRelatedWork W4255998495 @default.
- W2896597662 hasRelatedWork W4281386417 @default.
- W2896597662 isParatext "false" @default.
- W2896597662 isRetracted "false" @default.
- W2896597662 magId "2896597662" @default.
- W2896597662 workType "article" @default.