Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896601134> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2896601134 endingPage "11" @default.
- W2896601134 startingPage "1" @default.
- W2896601134 abstract "To improve the quality of multimedia services and stimulate secure sensing in Internet of Things applications, such as healthcare and traffic monitoring, mobile crowdsensing (MCS) systems must address security threats such as jamming, spoofing and faked sensing attacks during both sensing and information exchange processes in large-scale dynamic and heterogeneous networks. In this article, we investigate secure mobile crowdsensing and present ways to use deep learning (DL) methods, such as stacked autoencoder, deep neural networks, convolutional neural networks, and deep reinforcement learning, to improve approaches to MCS security, including authentication, privacy protection, faked sensing countermeasures, intrusion detection and anti-jamming transmissions in MCS. We discuss the performance gain of these DL-based approaches compared to traditional security schemes and identify the challenges that must be addressed to implement these approaches in practical MCS systems." @default.
- W2896601134 created "2018-10-26" @default.
- W2896601134 creator A5007863515 @default.
- W2896601134 creator A5025552633 @default.
- W2896601134 creator A5054363582 @default.
- W2896601134 creator A5067271421 @default.
- W2896601134 creator A5068976123 @default.
- W2896601134 creator A5076530999 @default.
- W2896601134 date "2018-10-01" @default.
- W2896601134 modified "2023-09-27" @default.
- W2896601134 title "Secure mobile crowdsensing based on deep learning" @default.
- W2896601134 cites W2146277225 @default.
- W2896601134 cites W2181349885 @default.
- W2896601134 cites W2473418344 @default.
- W2896601134 cites W2611484353 @default.
- W2896601134 cites W2612398564 @default.
- W2896601134 cites W2626903815 @default.
- W2896601134 cites W2734730826 @default.
- W2896601134 cites W2744714095 @default.
- W2896601134 cites W2750380841 @default.
- W2896601134 cites W2754620673 @default.
- W2896601134 cites W2782999659 @default.
- W2896601134 cites W2886287742 @default.
- W2896601134 cites W2919115771 @default.
- W2896601134 cites W3099785009 @default.
- W2896601134 doi "https://doi.org/10.1109/cc.2018.8485464" @default.
- W2896601134 hasPublicationYear "2018" @default.
- W2896601134 type Work @default.
- W2896601134 sameAs 2896601134 @default.
- W2896601134 citedByCount "37" @default.
- W2896601134 countsByYear W28966011342019 @default.
- W2896601134 countsByYear W28966011342020 @default.
- W2896601134 countsByYear W28966011342021 @default.
- W2896601134 countsByYear W28966011342022 @default.
- W2896601134 countsByYear W28966011342023 @default.
- W2896601134 crossrefType "journal-article" @default.
- W2896601134 hasAuthorship W2896601134A5007863515 @default.
- W2896601134 hasAuthorship W2896601134A5025552633 @default.
- W2896601134 hasAuthorship W2896601134A5054363582 @default.
- W2896601134 hasAuthorship W2896601134A5067271421 @default.
- W2896601134 hasAuthorship W2896601134A5068976123 @default.
- W2896601134 hasAuthorship W2896601134A5076530999 @default.
- W2896601134 hasConcept C107457646 @default.
- W2896601134 hasConcept C154945302 @default.
- W2896601134 hasConcept C2780821482 @default.
- W2896601134 hasConcept C31258907 @default.
- W2896601134 hasConcept C38652104 @default.
- W2896601134 hasConcept C41008148 @default.
- W2896601134 hasConceptScore W2896601134C107457646 @default.
- W2896601134 hasConceptScore W2896601134C154945302 @default.
- W2896601134 hasConceptScore W2896601134C2780821482 @default.
- W2896601134 hasConceptScore W2896601134C31258907 @default.
- W2896601134 hasConceptScore W2896601134C38652104 @default.
- W2896601134 hasConceptScore W2896601134C41008148 @default.
- W2896601134 hasIssue "10" @default.
- W2896601134 hasLocation W28966011341 @default.
- W2896601134 hasOpenAccess W2896601134 @default.
- W2896601134 hasPrimaryLocation W28966011341 @default.
- W2896601134 hasRelatedWork W1548040509 @default.
- W2896601134 hasRelatedWork W2130966263 @default.
- W2896601134 hasRelatedWork W2921179853 @default.
- W2896601134 hasRelatedWork W2943929564 @default.
- W2896601134 hasRelatedWork W2951885176 @default.
- W2896601134 hasRelatedWork W3015853966 @default.
- W2896601134 hasRelatedWork W3141632679 @default.
- W2896601134 hasRelatedWork W3200098344 @default.
- W2896601134 hasRelatedWork W3212211558 @default.
- W2896601134 hasRelatedWork W4291002381 @default.
- W2896601134 hasVolume "15" @default.
- W2896601134 isParatext "false" @default.
- W2896601134 isRetracted "false" @default.
- W2896601134 magId "2896601134" @default.
- W2896601134 workType "article" @default.