Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896625451> ?p ?o ?g. }
- W2896625451 abstract "The effective theory of the Anton-Schmidt cosmic fluid within the Debye approximation is investigated. In this picture, the Universe is modeled out by means of a medium without cosmological constant. In particular, the Anton-Schmidt representation of matter describes the pressure of crystalline solids under deformations imposed by isotropic stresses. The approach scheme is related to the fact that the Universe deforms under the action of the cosmic expansion itself. Thus, we frame the dark energy term as a function of scalar fields and obtain the corresponding dark energy potential $V(ensuremath{varphi})$. Different epochs of the Universe evolution are investigated in terms of the evolution of $ensuremath{varphi}$. We show how the Anton-Schmidt equation of state is capable of describing both late and early epochs of cosmic evolution. Finally, numerical bounds on the Anton-Schmidt model with $n=ensuremath{-}1$ are derived through a Markov Chain Monte Carlo analysis on the combination of data coming from type Ia Supernovae, observations of Hubble parameter, and baryon acoustic oscillations. Statistical comparison with the $mathrm{ensuremath{Lambda}}mathrm{CDM}$ model is performed by the Akaike information criterion and Bayesian information criterion selection criteria. Results are in excellent agreement with the low-redshift data. A further generalization of the model is presented to satisfy the theoretical predictions at early-stage cosmology." @default.
- W2896625451 created "2018-10-26" @default.
- W2896625451 creator A5062320197 @default.
- W2896625451 creator A5074224919 @default.
- W2896625451 creator A5076706548 @default.
- W2896625451 creator A5089975002 @default.
- W2896625451 date "2019-01-29" @default.
- W2896625451 modified "2023-10-16" @default.
- W2896625451 title "Effective field description of the Anton-Schmidt cosmic fluid" @default.
- W2896625451 cites W1487165329 @default.
- W2896625451 cites W1555237261 @default.
- W2896625451 cites W1838110310 @default.
- W2896625451 cites W1849126332 @default.
- W2896625451 cites W1853767801 @default.
- W2896625451 cites W1963895115 @default.
- W2896625451 cites W1972128701 @default.
- W2896625451 cites W1973861971 @default.
- W2896625451 cites W1982435687 @default.
- W2896625451 cites W1983965028 @default.
- W2896625451 cites W1999192875 @default.
- W2896625451 cites W1999626986 @default.
- W2896625451 cites W2007421650 @default.
- W2896625451 cites W2008045161 @default.
- W2896625451 cites W2011426435 @default.
- W2896625451 cites W2012521290 @default.
- W2896625451 cites W2017682400 @default.
- W2896625451 cites W2019491774 @default.
- W2896625451 cites W2021820901 @default.
- W2896625451 cites W2029044528 @default.
- W2896625451 cites W2036439761 @default.
- W2896625451 cites W2043303931 @default.
- W2896625451 cites W2045719640 @default.
- W2896625451 cites W2045905375 @default.
- W2896625451 cites W2047102032 @default.
- W2896625451 cites W2048446165 @default.
- W2896625451 cites W2056583201 @default.
- W2896625451 cites W2057645607 @default.
- W2896625451 cites W2060065244 @default.
- W2896625451 cites W2065838006 @default.
- W2896625451 cites W2069931445 @default.
- W2896625451 cites W2073163146 @default.
- W2896625451 cites W2073603601 @default.
- W2896625451 cites W2073832139 @default.
- W2896625451 cites W2076533122 @default.
- W2896625451 cites W2083759982 @default.
- W2896625451 cites W2084574429 @default.
- W2896625451 cites W2087016157 @default.
- W2896625451 cites W2105670966 @default.
- W2896625451 cites W2108313227 @default.
- W2896625451 cites W2121951791 @default.
- W2896625451 cites W2124601931 @default.
- W2896625451 cites W2131279590 @default.
- W2896625451 cites W2134251287 @default.
- W2896625451 cites W2135920379 @default.
- W2896625451 cites W2138205333 @default.
- W2896625451 cites W2142560826 @default.
- W2896625451 cites W2142635246 @default.
- W2896625451 cites W2156305595 @default.
- W2896625451 cites W2157494422 @default.
- W2896625451 cites W2168175751 @default.
- W2896625451 cites W2170447169 @default.
- W2896625451 cites W2170967203 @default.
- W2896625451 cites W2558578182 @default.
- W2896625451 cites W2591817099 @default.
- W2896625451 cites W2841062288 @default.
- W2896625451 cites W2952150967 @default.
- W2896625451 cites W2963458559 @default.
- W2896625451 cites W3098014270 @default.
- W2896625451 cites W3098371892 @default.
- W2896625451 cites W3098728794 @default.
- W2896625451 cites W3099029965 @default.
- W2896625451 cites W3099234116 @default.
- W2896625451 cites W3099263247 @default.
- W2896625451 cites W3099411782 @default.
- W2896625451 cites W3099582894 @default.
- W2896625451 cites W3100514957 @default.
- W2896625451 cites W3100961315 @default.
- W2896625451 cites W3102136416 @default.
- W2896625451 cites W3102687315 @default.
- W2896625451 cites W3103516431 @default.
- W2896625451 cites W3103954622 @default.
- W2896625451 cites W3104043306 @default.
- W2896625451 cites W3104250493 @default.
- W2896625451 cites W3105368576 @default.
- W2896625451 cites W3105579043 @default.
- W2896625451 cites W3123909992 @default.
- W2896625451 cites W3126014817 @default.
- W2896625451 cites W4292875581 @default.
- W2896625451 doi "https://doi.org/10.1103/physrevd.99.023532" @default.
- W2896625451 hasPublicationYear "2019" @default.
- W2896625451 type Work @default.
- W2896625451 sameAs 2896625451 @default.
- W2896625451 citedByCount "31" @default.
- W2896625451 countsByYear W28966254512019 @default.
- W2896625451 countsByYear W28966254512020 @default.
- W2896625451 countsByYear W28966254512021 @default.
- W2896625451 countsByYear W28966254512022 @default.
- W2896625451 countsByYear W28966254512023 @default.
- W2896625451 crossrefType "journal-article" @default.
- W2896625451 hasAuthorship W2896625451A5062320197 @default.