Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896631732> ?p ?o ?g. }
- W2896631732 endingPage "2649" @default.
- W2896631732 startingPage "2620" @default.
- W2896631732 abstract "Purpose This paper aims to develop a novel numerical method based on bi-cubic B-spline functions and alternating direction (ADI) scheme to study numerical solutions of advection diffusion equation. The method captures important properties in the advection of fluids very efficiently. C.P.U. time has been shown to be very less as compared with other numerical schemes. Problems of great practical importance have been simulated through the proposed numerical scheme to test the efficiency and applicability of method. Design/methodology/approach A bi-cubic B-spline ADI method has been proposed to capture many complex properties in the advection of fluids. Findings Bi-cubic B-spline ADI technique to investigate numerical solutions of partial differential equations has been studied. Presented numerical procedure has been applied to important two-dimensional advection diffusion equations. Computed results are efficient and reliable, have been depicted by graphs and several contour forms and confirm the accuracy of the applied technique. Stability analysis has been performed by von Neumann method and the proposed method is shown to satisfy stability criteria unconditionally. In future, the authors aim to extend this study by applying more complex partial differential equations. Though the structure of the method seems to be little complex, the method has the advantage of using small processing time. Consequently, the method may be used to find solutions at higher time levels also. Originality/value ADI technique has never been applied with bi-cubic B-spline functions for numerical solutions of partial differential equations." @default.
- W2896631732 created "2018-10-26" @default.
- W2896631732 creator A5007381805 @default.
- W2896631732 creator A5023285201 @default.
- W2896631732 date "2018-10-16" @default.
- W2896631732 modified "2023-09-24" @default.
- W2896631732 title "An efficient Bi-cubic B-spline ADI method for numerical solutions of two-dimensional unsteady advection diffusion equations" @default.
- W2896631732 cites W1966424247 @default.
- W2896631732 cites W1971832519 @default.
- W2896631732 cites W1972290759 @default.
- W2896631732 cites W1973142736 @default.
- W2896631732 cites W1985037379 @default.
- W2896631732 cites W1995263790 @default.
- W2896631732 cites W1999380124 @default.
- W2896631732 cites W2003372231 @default.
- W2896631732 cites W2007091413 @default.
- W2896631732 cites W2009675612 @default.
- W2896631732 cites W2010128874 @default.
- W2896631732 cites W2012471743 @default.
- W2896631732 cites W2013106503 @default.
- W2896631732 cites W2029082177 @default.
- W2896631732 cites W2034598676 @default.
- W2896631732 cites W2043346499 @default.
- W2896631732 cites W2050935284 @default.
- W2896631732 cites W2055180235 @default.
- W2896631732 cites W2060187899 @default.
- W2896631732 cites W2062649642 @default.
- W2896631732 cites W2065114649 @default.
- W2896631732 cites W2073236033 @default.
- W2896631732 cites W2074428276 @default.
- W2896631732 cites W2088080615 @default.
- W2896631732 cites W2089835190 @default.
- W2896631732 cites W2095036901 @default.
- W2896631732 cites W2105010558 @default.
- W2896631732 cites W2106814783 @default.
- W2896631732 cites W2111540006 @default.
- W2896631732 cites W2112349863 @default.
- W2896631732 cites W2150511304 @default.
- W2896631732 cites W2234761409 @default.
- W2896631732 cites W2252033393 @default.
- W2896631732 cites W2309599956 @default.
- W2896631732 cites W2519246473 @default.
- W2896631732 cites W2519627074 @default.
- W2896631732 cites W2751987614 @default.
- W2896631732 cites W2801117909 @default.
- W2896631732 doi "https://doi.org/10.1108/hff-12-2017-0511" @default.
- W2896631732 hasPublicationYear "2018" @default.
- W2896631732 type Work @default.
- W2896631732 sameAs 2896631732 @default.
- W2896631732 citedByCount "3" @default.
- W2896631732 countsByYear W28966317322020 @default.
- W2896631732 countsByYear W28966317322021 @default.
- W2896631732 crossrefType "journal-article" @default.
- W2896631732 hasAuthorship W2896631732A5007381805 @default.
- W2896631732 hasAuthorship W2896631732A5023285201 @default.
- W2896631732 hasConcept C112972136 @default.
- W2896631732 hasConcept C119857082 @default.
- W2896631732 hasConcept C121332964 @default.
- W2896631732 hasConcept C134306372 @default.
- W2896631732 hasConcept C142363948 @default.
- W2896631732 hasConcept C15945459 @default.
- W2896631732 hasConcept C176321772 @default.
- W2896631732 hasConcept C205951836 @default.
- W2896631732 hasConcept C28826006 @default.
- W2896631732 hasConcept C33923547 @default.
- W2896631732 hasConcept C41008148 @default.
- W2896631732 hasConcept C48753275 @default.
- W2896631732 hasConcept C5072599 @default.
- W2896631732 hasConcept C93779851 @default.
- W2896631732 hasConcept C97355855 @default.
- W2896631732 hasConceptScore W2896631732C112972136 @default.
- W2896631732 hasConceptScore W2896631732C119857082 @default.
- W2896631732 hasConceptScore W2896631732C121332964 @default.
- W2896631732 hasConceptScore W2896631732C134306372 @default.
- W2896631732 hasConceptScore W2896631732C142363948 @default.
- W2896631732 hasConceptScore W2896631732C15945459 @default.
- W2896631732 hasConceptScore W2896631732C176321772 @default.
- W2896631732 hasConceptScore W2896631732C205951836 @default.
- W2896631732 hasConceptScore W2896631732C28826006 @default.
- W2896631732 hasConceptScore W2896631732C33923547 @default.
- W2896631732 hasConceptScore W2896631732C41008148 @default.
- W2896631732 hasConceptScore W2896631732C48753275 @default.
- W2896631732 hasConceptScore W2896631732C5072599 @default.
- W2896631732 hasConceptScore W2896631732C93779851 @default.
- W2896631732 hasConceptScore W2896631732C97355855 @default.
- W2896631732 hasIssue "11" @default.
- W2896631732 hasLocation W28966317321 @default.
- W2896631732 hasOpenAccess W2896631732 @default.
- W2896631732 hasPrimaryLocation W28966317321 @default.
- W2896631732 hasRelatedWork W1963544489 @default.
- W2896631732 hasRelatedWork W2016555302 @default.
- W2896631732 hasRelatedWork W2016984945 @default.
- W2896631732 hasRelatedWork W2309849672 @default.
- W2896631732 hasRelatedWork W2366432349 @default.
- W2896631732 hasRelatedWork W2505215844 @default.
- W2896631732 hasRelatedWork W2743618309 @default.
- W2896631732 hasRelatedWork W2896631732 @default.
- W2896631732 hasRelatedWork W2909927249 @default.