Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896634706> ?p ?o ?g. }
- W2896634706 endingPage "169" @default.
- W2896634706 startingPage "163" @default.
- W2896634706 abstract "Background To determine whether machine learning with histogram analysis of coronary CT angiography (CCTA) yields higher diagnostic performance for coronary plaque characterization than the conventional cut-off method using the median CT number. Methods We included 78 patients with 78 coronary plaques who had undergone CCTA and integrated backscatter intravascular ultrasound (IB-IVUS) studies. IB-IVUS diagnosed 32 as fibrous- and 46 as fatty or fibro-fatty plaques. We recorded the coronary CT number and 7 histogram parameters (minimum and mean value, standard deviation (SD), maximum value, skewness, kurtosis, and entropy) of the plaque CT number. We also evaluated the importance of each feature using the Gini index which rates the importance of individual features. For calculations we used XGBoost. Using 5-fold cross validation of the plaque CT number, the area under the receiver operating characteristic curve of the machine learning- (extreme gradient boosting) and the conventional cut-off method was compared. Results The median CT number was 56.38 Hounsfield units (HU, 8.00–95.90) for fibrous- and 1.15 HU (−35.8–113.30) for fatty- or fibro-fatty plaques. The calculated optimal threshold for the plaque CT number was 36.1 ± 2.8 HU. The highest Gini index was the coronary CT number (0.19) followed by the minimum value (0.17), kurtosis (0.17), entropy (0.14), skewness (0.11), the mean value (0.11), the standard deviation (0.06), and the maximum value (0.05), and energy (0.00). By validation analysis, the machine learning-yielded a significantly higher area under the curve than the conventional method (area under the curve 0.92 and 95%, confidence interval 0.86–0.92 vs 0.83 and 0.75–0.92, p = 0.001). Conclusion The machine learning-was superior the conventional cut-off method for coronary plaque characterization using the plaque CT number on CCTA images." @default.
- W2896634706 created "2018-10-26" @default.
- W2896634706 creator A5002227671 @default.
- W2896634706 creator A5006106317 @default.
- W2896634706 creator A5015181851 @default.
- W2896634706 creator A5016559536 @default.
- W2896634706 creator A5032643459 @default.
- W2896634706 creator A5040086585 @default.
- W2896634706 creator A5057900219 @default.
- W2896634706 creator A5068640748 @default.
- W2896634706 creator A5071371241 @default.
- W2896634706 creator A5074077062 @default.
- W2896634706 date "2019-03-01" @default.
- W2896634706 modified "2023-10-15" @default.
- W2896634706 title "Machine-learning integration of CT histogram analysis to evaluate the composition of atherosclerotic plaques: Validation with IB-IVUS" @default.
- W2896634706 cites W1265468362 @default.
- W2896634706 cites W1820655337 @default.
- W2896634706 cites W1971580216 @default.
- W2896634706 cites W1998248288 @default.
- W2896634706 cites W2011923204 @default.
- W2896634706 cites W2018637416 @default.
- W2896634706 cites W2019608621 @default.
- W2896634706 cites W2023562964 @default.
- W2896634706 cites W2024105966 @default.
- W2896634706 cites W2029470815 @default.
- W2896634706 cites W2036565167 @default.
- W2896634706 cites W2040504974 @default.
- W2896634706 cites W2069938367 @default.
- W2896634706 cites W2071936488 @default.
- W2896634706 cites W2099741846 @default.
- W2896634706 cites W2105001658 @default.
- W2896634706 cites W2115680750 @default.
- W2896634706 cites W2135285836 @default.
- W2896634706 cites W2142434504 @default.
- W2896634706 cites W2218370991 @default.
- W2896634706 cites W2224828530 @default.
- W2896634706 cites W2412291070 @default.
- W2896634706 cites W2614549267 @default.
- W2896634706 doi "https://doi.org/10.1016/j.jcct.2018.10.018" @default.
- W2896634706 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30529218" @default.
- W2896634706 hasPublicationYear "2019" @default.
- W2896634706 type Work @default.
- W2896634706 sameAs 2896634706 @default.
- W2896634706 citedByCount "27" @default.
- W2896634706 countsByYear W28966347062019 @default.
- W2896634706 countsByYear W28966347062020 @default.
- W2896634706 countsByYear W28966347062021 @default.
- W2896634706 countsByYear W28966347062022 @default.
- W2896634706 countsByYear W28966347062023 @default.
- W2896634706 crossrefType "journal-article" @default.
- W2896634706 hasAuthorship W2896634706A5002227671 @default.
- W2896634706 hasAuthorship W2896634706A5006106317 @default.
- W2896634706 hasAuthorship W2896634706A5015181851 @default.
- W2896634706 hasAuthorship W2896634706A5016559536 @default.
- W2896634706 hasAuthorship W2896634706A5032643459 @default.
- W2896634706 hasAuthorship W2896634706A5040086585 @default.
- W2896634706 hasAuthorship W2896634706A5057900219 @default.
- W2896634706 hasAuthorship W2896634706A5068640748 @default.
- W2896634706 hasAuthorship W2896634706A5071371241 @default.
- W2896634706 hasAuthorship W2896634706A5074077062 @default.
- W2896634706 hasConcept C105795698 @default.
- W2896634706 hasConcept C115961682 @default.
- W2896634706 hasConcept C122342681 @default.
- W2896634706 hasConcept C126322002 @default.
- W2896634706 hasConcept C126838900 @default.
- W2896634706 hasConcept C154945302 @default.
- W2896634706 hasConcept C166963901 @default.
- W2896634706 hasConcept C187954543 @default.
- W2896634706 hasConcept C22679943 @default.
- W2896634706 hasConcept C2778213512 @default.
- W2896634706 hasConcept C2989005 @default.
- W2896634706 hasConcept C33923547 @default.
- W2896634706 hasConcept C41008148 @default.
- W2896634706 hasConcept C53533937 @default.
- W2896634706 hasConcept C544519230 @default.
- W2896634706 hasConcept C58471807 @default.
- W2896634706 hasConcept C71924100 @default.
- W2896634706 hasConceptScore W2896634706C105795698 @default.
- W2896634706 hasConceptScore W2896634706C115961682 @default.
- W2896634706 hasConceptScore W2896634706C122342681 @default.
- W2896634706 hasConceptScore W2896634706C126322002 @default.
- W2896634706 hasConceptScore W2896634706C126838900 @default.
- W2896634706 hasConceptScore W2896634706C154945302 @default.
- W2896634706 hasConceptScore W2896634706C166963901 @default.
- W2896634706 hasConceptScore W2896634706C187954543 @default.
- W2896634706 hasConceptScore W2896634706C22679943 @default.
- W2896634706 hasConceptScore W2896634706C2778213512 @default.
- W2896634706 hasConceptScore W2896634706C2989005 @default.
- W2896634706 hasConceptScore W2896634706C33923547 @default.
- W2896634706 hasConceptScore W2896634706C41008148 @default.
- W2896634706 hasConceptScore W2896634706C53533937 @default.
- W2896634706 hasConceptScore W2896634706C544519230 @default.
- W2896634706 hasConceptScore W2896634706C58471807 @default.
- W2896634706 hasConceptScore W2896634706C71924100 @default.
- W2896634706 hasIssue "2" @default.
- W2896634706 hasLocation W28966347061 @default.
- W2896634706 hasLocation W28966347062 @default.
- W2896634706 hasOpenAccess W2896634706 @default.