Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896645834> ?p ?o ?g. }
- W2896645834 endingPage "1204" @default.
- W2896645834 startingPage "1190" @default.
- W2896645834 abstract "Research Article| October 16, 2018 River Morphodynamic Evolution Under Dam-Induced Backwater: An Example from the Po River (Italy) Vittorio Maselli; Vittorio Maselli 1University of Aberdeen, School of Geosciences, Aberdeen, U.K. 2Institute of Marine Sciences, ISMAR-CNR, Bologna, Italy Search for other works by this author on: GSW Google Scholar Claudio Pellegrini; Claudio Pellegrini 2Institute of Marine Sciences, ISMAR-CNR, Bologna, Italy Search for other works by this author on: GSW Google Scholar Fabrizio Del Bianco; Fabrizio Del Bianco 3Consorzio ProAmbiente, Bologna, Italy Search for other works by this author on: GSW Google Scholar Alessandra Mercorella; Alessandra Mercorella 2Institute of Marine Sciences, ISMAR-CNR, Bologna, Italy Search for other works by this author on: GSW Google Scholar Michael Nones; Michael Nones 4Research Centre for Constructions, Fluid Dynamics Unit, University of Bologna, Bologna, Italy Search for other works by this author on: GSW Google Scholar Luca Crose; Luca Crose 5Agenzia Interregionale per il Fiume Po, AIPO, Settore Navigazione Interna, Parma, Italy Search for other works by this author on: GSW Google Scholar Massimo Guerrero; Massimo Guerrero 6Department of Civil, Chemical, Environmental and Material Engineering, University of Bologna, Bologna, Italy Search for other works by this author on: GSW Google Scholar Jeffrey A. Nittrouer Jeffrey A. Nittrouer 7Rice University, Department of Earth, Environmental, and Planetary Sciences, MS-126, Houston, Texas 77005, U.S.A. Search for other works by this author on: GSW Google Scholar Journal of Sedimentary Research (2018) 88 (10): 1190–1204. https://doi.org/10.2110/jsr.2018.61 Article history first online: 16 Oct 2018 Cite View This Citation Add to Citation Manager Share Icon Share Facebook Twitter LinkedIn Email Tools Icon Tools Get Permissions Search Site Citation Vittorio Maselli, Claudio Pellegrini, Fabrizio Del Bianco, Alessandra Mercorella, Michael Nones, Luca Crose, Massimo Guerrero, Jeffrey A. Nittrouer; River Morphodynamic Evolution Under Dam-Induced Backwater: An Example from the Po River (Italy). Journal of Sedimentary Research 2018;; 88 (10): 1190–1204. doi: https://doi.org/10.2110/jsr.2018.61 Download citation file: Ris (Zotero) Refmanager EasyBib Bookends Mendeley Papers EndNote RefWorks BibTex toolbar search Search nav search search input Search input auto suggest search filter All ContentBy SocietyJournal of Sedimentary Research Search Advanced Search Abstract River systems evolve in response to the construction of dams and artificial reservoirs, offering the possibility to investigate the short-term effects of base level oscillations on fluvial architecture. A major effort has been dedicated to the understanding of river response downstream of large dams, where deep channel incisions occur in response to the removal of sediment that is sequestered in the upstream reservoir. Integrating field observations and numerical-modeling results, this work quantifies the sedimentary and morphological changes of the Po River (Italy) upstream of the Isola Serafini dam to investigate the impact of dam-induced backwater on river morphodynamics. The construction of a reservoir generates a new base level that forces an upstream shift of alluvial lithofacies and a change in the planform geometry of the river. The lateral migration rate of the channel is up to 45 m/yr upstream of the influence of backwater flow and ca. 10 m/yr at the transition from normal to backwater flow conditions (30 km from the dam). Within this reach, a reduction of the bed shear stress promotes deposition of coarse-grained sediment and the emergence of the gravel–sand transition of the river. The lateral migration of the channel continuously decreases over time, and rates < 5 m/yr can be observed in the reservoir backwater zone. This trend is accompanied by the drowning of channel bars, the reduction of river competence, and an increase in bedform spacing. Oscillatory backwater and drawdown surface water profiles can be observed closer to the dam, which are associated with varying low-discharge and high-discharge events, respectively. While low-flow conditions, persisting for much of the year, allow the deposition of fine-grained sediment, high-discharge events promote not only the resuspension and transport of fine material but also the progressive erosion of channel bars and the overall deepening of the thalweg. This study provides a clear picture of the river evolution in response to the construction of a hydropower dam that may be of help in predicting how other fluvial systems will respond to future human interventions. Moreover, the result of how changes in base level and oscillations in water surface profile (backwater and drawdown) control river hydro-morphodynamics and sediment transport may provide new insights when reconstructing ancient fluvial and deltaic sequences. You do not currently have access to this article." @default.
- W2896645834 created "2018-10-26" @default.
- W2896645834 creator A5004369763 @default.
- W2896645834 creator A5008802212 @default.
- W2896645834 creator A5014198530 @default.
- W2896645834 creator A5040432663 @default.
- W2896645834 creator A5048865766 @default.
- W2896645834 creator A5051993629 @default.
- W2896645834 creator A5053408507 @default.
- W2896645834 creator A5054167001 @default.
- W2896645834 date "2018-10-16" @default.
- W2896645834 modified "2023-10-14" @default.
- W2896645834 title "River Morphodynamic Evolution Under Dam-Induced Backwater: An Example from the Po River (Italy)" @default.
- W2896645834 cites W1509880555 @default.
- W2896645834 cites W1553836780 @default.
- W2896645834 cites W1557871810 @default.
- W2896645834 cites W1575942708 @default.
- W2896645834 cites W1582591394 @default.
- W2896645834 cites W1606765290 @default.
- W2896645834 cites W1629642785 @default.
- W2896645834 cites W1662857152 @default.
- W2896645834 cites W1858612344 @default.
- W2896645834 cites W1862729539 @default.
- W2896645834 cites W1879583940 @default.
- W2896645834 cites W1913583969 @default.
- W2896645834 cites W1964279790 @default.
- W2896645834 cites W1970584749 @default.
- W2896645834 cites W1970797048 @default.
- W2896645834 cites W1976878314 @default.
- W2896645834 cites W1979107314 @default.
- W2896645834 cites W1979355964 @default.
- W2896645834 cites W1980866193 @default.
- W2896645834 cites W1987250628 @default.
- W2896645834 cites W1987857947 @default.
- W2896645834 cites W1990469169 @default.
- W2896645834 cites W1994691622 @default.
- W2896645834 cites W1995194152 @default.
- W2896645834 cites W1997338718 @default.
- W2896645834 cites W2000779942 @default.
- W2896645834 cites W2015876786 @default.
- W2896645834 cites W2025756024 @default.
- W2896645834 cites W2027943173 @default.
- W2896645834 cites W2031657370 @default.
- W2896645834 cites W2034318321 @default.
- W2896645834 cites W2038083194 @default.
- W2896645834 cites W2039295782 @default.
- W2896645834 cites W2040418904 @default.
- W2896645834 cites W2041226699 @default.
- W2896645834 cites W2044946456 @default.
- W2896645834 cites W2049960644 @default.
- W2896645834 cites W2052607820 @default.
- W2896645834 cites W2054127992 @default.
- W2896645834 cites W2057688286 @default.
- W2896645834 cites W2074438535 @default.
- W2896645834 cites W2077267127 @default.
- W2896645834 cites W2081727111 @default.
- W2896645834 cites W2082142434 @default.
- W2896645834 cites W2083863384 @default.
- W2896645834 cites W2084371765 @default.
- W2896645834 cites W2084432648 @default.
- W2896645834 cites W2096797858 @default.
- W2896645834 cites W2099093517 @default.
- W2896645834 cites W2102384030 @default.
- W2896645834 cites W2103865037 @default.
- W2896645834 cites W2109107132 @default.
- W2896645834 cites W2113298788 @default.
- W2896645834 cites W2119684730 @default.
- W2896645834 cites W2126951599 @default.
- W2896645834 cites W2130432031 @default.
- W2896645834 cites W2134412768 @default.
- W2896645834 cites W2135015717 @default.
- W2896645834 cites W2140176696 @default.
- W2896645834 cites W2144905969 @default.
- W2896645834 cites W2152785259 @default.
- W2896645834 cites W2157381528 @default.
- W2896645834 cites W2170165378 @default.
- W2896645834 cites W2275538527 @default.
- W2896645834 cites W2321530617 @default.
- W2896645834 cites W2331572358 @default.
- W2896645834 cites W2337571635 @default.
- W2896645834 cites W2428299833 @default.
- W2896645834 cites W2494000845 @default.
- W2896645834 cites W2515568739 @default.
- W2896645834 cites W2529999421 @default.
- W2896645834 cites W2559908405 @default.
- W2896645834 cites W2589054552 @default.
- W2896645834 cites W2785519018 @default.
- W2896645834 cites W31812045 @default.
- W2896645834 cites W388990147 @default.
- W2896645834 doi "https://doi.org/10.2110/jsr.2018.61" @default.
- W2896645834 hasPublicationYear "2018" @default.
- W2896645834 type Work @default.
- W2896645834 sameAs 2896645834 @default.
- W2896645834 citedByCount "27" @default.
- W2896645834 countsByYear W28966458342019 @default.
- W2896645834 countsByYear W28966458342020 @default.
- W2896645834 countsByYear W28966458342021 @default.
- W2896645834 countsByYear W28966458342022 @default.