Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896650246> ?p ?o ?g. }
- W2896650246 abstract "Compressed robust principal component analysis (RPCA), in which a low-rank matrix $boldsymbol {L}$ and a sparse matrix $boldsymbol {S}$ are recovered from an underdetermined amount of noisy linear measurements of their sum $boldsymbol {L}+boldsymbol {S}$ , arises in various applications such as face recognition and video foreground/background separation. This problem can be solved by Bayesian inference based iterative algorithms. However, most existing Bayesian algorithms factorize $boldsymbol {L}$ into the product of two rank- $r$ matrices, and estimate the two rank- $r$ matrices (rather than $boldsymbol {L}$ itself) in the iterative process, where $r$ is the rank of $boldsymbol {L}$ . On one hand, this factorization is not essential to the original problem and so may cause a potential performance loss. On the other hand, the existing Bayesian algorithms assume a certain probability model for the low-rank matrix $boldsymbol {L}$ and the sparse matrix $boldsymbol {S}$ , whereas the probability model of $boldsymbol {L}$ and $boldsymbol {S}$ is usually difficult to acquire in real applications. In this paper, we develop a Bayesian message passing algorithm, termed turbo-type message passing (TMP), for the compressed RPCA problem. We show that the proposed TMP algorithm significantly outperforms the state-of-the-art compressed RPCA algorithms, and requires a much lower computational complexity. We also show that TMP does not assume any prior probability model for $boldsymbol {L}$ and $boldsymbol {S}$ ; TMP even does not require the knowledge of the environmental information, such as the rank of $boldsymbol {L}$ and the sparsity level of $boldsymbol {S}$ . Therefore, TMP gives a promising approach for real applications of the compressed RPCA problem." @default.
- W2896650246 created "2018-10-26" @default.
- W2896650246 creator A5040916444 @default.
- W2896650246 creator A5049692788 @default.
- W2896650246 creator A5063946480 @default.
- W2896650246 date "2018-12-01" @default.
- W2896650246 modified "2023-09-24" @default.
- W2896650246 title "Turbo-Type Message Passing Algorithms for Compressed Robust Principal Component Analysis" @default.
- W2896650246 cites W1510028821 @default.
- W2896650246 cites W1736339626 @default.
- W2896650246 cites W1959879694 @default.
- W2896650246 cites W198034206 @default.
- W2896650246 cites W1997650685 @default.
- W2896650246 cites W2000828982 @default.
- W2896650246 cites W2004026774 @default.
- W2896650246 cites W2011697680 @default.
- W2896650246 cites W2045983409 @default.
- W2896650246 cites W2063392856 @default.
- W2896650246 cites W2063942101 @default.
- W2896650246 cites W2078204800 @default.
- W2896650246 cites W2082029531 @default.
- W2896650246 cites W2097308346 @default.
- W2896650246 cites W2115979064 @default.
- W2896650246 cites W2124252039 @default.
- W2896650246 cites W2129812935 @default.
- W2896650246 cites W2131628350 @default.
- W2896650246 cites W2140742952 @default.
- W2896650246 cites W2143701678 @default.
- W2896650246 cites W2145962650 @default.
- W2896650246 cites W2146842127 @default.
- W2896650246 cites W2158923808 @default.
- W2896650246 cites W2166670884 @default.
- W2896650246 cites W2182111601 @default.
- W2896650246 cites W2246213498 @default.
- W2896650246 cites W2289917018 @default.
- W2896650246 cites W2296616510 @default.
- W2896650246 cites W2533208082 @default.
- W2896650246 cites W2603333836 @default.
- W2896650246 cites W2604470139 @default.
- W2896650246 cites W2611328865 @default.
- W2896650246 cites W2619269121 @default.
- W2896650246 cites W2786336660 @default.
- W2896650246 cites W2963602028 @default.
- W2896650246 cites W2963676935 @default.
- W2896650246 cites W2963762195 @default.
- W2896650246 cites W2963958726 @default.
- W2896650246 cites W2964047892 @default.
- W2896650246 cites W3098848552 @default.
- W2896650246 cites W2889106020 @default.
- W2896650246 doi "https://doi.org/10.1109/jstsp.2018.2876621" @default.
- W2896650246 hasPublicationYear "2018" @default.
- W2896650246 type Work @default.
- W2896650246 sameAs 2896650246 @default.
- W2896650246 citedByCount "6" @default.
- W2896650246 countsByYear W28966502462019 @default.
- W2896650246 countsByYear W28966502462020 @default.
- W2896650246 countsByYear W28966502462021 @default.
- W2896650246 countsByYear W28966502462023 @default.
- W2896650246 crossrefType "journal-article" @default.
- W2896650246 hasAuthorship W2896650246A5040916444 @default.
- W2896650246 hasAuthorship W2896650246A5049692788 @default.
- W2896650246 hasAuthorship W2896650246A5063946480 @default.
- W2896650246 hasConcept C106487976 @default.
- W2896650246 hasConcept C107673813 @default.
- W2896650246 hasConcept C11413529 @default.
- W2896650246 hasConcept C114614502 @default.
- W2896650246 hasConcept C121332964 @default.
- W2896650246 hasConcept C124851039 @default.
- W2896650246 hasConcept C154945302 @default.
- W2896650246 hasConcept C159985019 @default.
- W2896650246 hasConcept C160234255 @default.
- W2896650246 hasConcept C163716315 @default.
- W2896650246 hasConcept C164226766 @default.
- W2896650246 hasConcept C179690561 @default.
- W2896650246 hasConcept C187834632 @default.
- W2896650246 hasConcept C18903297 @default.
- W2896650246 hasConcept C192562407 @default.
- W2896650246 hasConcept C27438332 @default.
- W2896650246 hasConcept C2777299769 @default.
- W2896650246 hasConcept C2777749129 @default.
- W2896650246 hasConcept C33923547 @default.
- W2896650246 hasConcept C41008148 @default.
- W2896650246 hasConcept C56372850 @default.
- W2896650246 hasConcept C62520636 @default.
- W2896650246 hasConcept C86803240 @default.
- W2896650246 hasConceptScore W2896650246C106487976 @default.
- W2896650246 hasConceptScore W2896650246C107673813 @default.
- W2896650246 hasConceptScore W2896650246C11413529 @default.
- W2896650246 hasConceptScore W2896650246C114614502 @default.
- W2896650246 hasConceptScore W2896650246C121332964 @default.
- W2896650246 hasConceptScore W2896650246C124851039 @default.
- W2896650246 hasConceptScore W2896650246C154945302 @default.
- W2896650246 hasConceptScore W2896650246C159985019 @default.
- W2896650246 hasConceptScore W2896650246C160234255 @default.
- W2896650246 hasConceptScore W2896650246C163716315 @default.
- W2896650246 hasConceptScore W2896650246C164226766 @default.
- W2896650246 hasConceptScore W2896650246C179690561 @default.
- W2896650246 hasConceptScore W2896650246C187834632 @default.
- W2896650246 hasConceptScore W2896650246C18903297 @default.
- W2896650246 hasConceptScore W2896650246C192562407 @default.