Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896658870> ?p ?o ?g. }
- W2896658870 endingPage "249" @default.
- W2896658870 startingPage "239" @default.
- W2896658870 abstract "Artificial intelligence (AI) enables machines to provide unparalleled value in a myriad of industries and applications. In recent years, researchers have harnessed artificial intelligence to analyze large-volume, unstructured medical data and perform clinical tasks, such as the identification of diabetic retinopathy or the diagnosis of cutaneous malignancies. Applications of artificial intelligence techniques, specifically machine learning and more recently deep learning, are beginning to emerge in gastrointestinal endoscopy. The most promising of these efforts have been in computer-aided detection and computer-aided diagnosis of colorectal polyps, with recent systems demonstrating high sensitivity and accuracy even when compared to expert human endoscopists. AI has also been utilized to identify gastrointestinal bleeding, to detect areas of inflammation, and even to diagnose certain gastrointestinal infections. Future work in the field should concentrate on creating seamless integration of AI systems with current endoscopy platforms and electronic medical records, developing training modules to teach clinicians how to use AI tools, and determining the best means for regulation and approval of new AI technology." @default.
- W2896658870 created "2018-10-26" @default.
- W2896658870 creator A5004080101 @default.
- W2896658870 creator A5014879891 @default.
- W2896658870 creator A5051116899 @default.
- W2896658870 creator A5088236048 @default.
- W2896658870 date "2018-10-16" @default.
- W2896658870 modified "2023-10-17" @default.
- W2896658870 title "Artificial intelligence in gastrointestinal endoscopy: The future is almost here" @default.
- W2896658870 cites W1263185392 @default.
- W2896658870 cites W1539744196 @default.
- W2896658870 cites W1567577094 @default.
- W2896658870 cites W1966210936 @default.
- W2896658870 cites W1984229840 @default.
- W2896658870 cites W1988352665 @default.
- W2896658870 cites W1989555529 @default.
- W2896658870 cites W1995517024 @default.
- W2896658870 cites W1996870908 @default.
- W2896658870 cites W2019397787 @default.
- W2896658870 cites W2026791416 @default.
- W2896658870 cites W2028704450 @default.
- W2896658870 cites W2031372290 @default.
- W2896658870 cites W2031513485 @default.
- W2896658870 cites W2032187609 @default.
- W2896658870 cites W2044297386 @default.
- W2896658870 cites W2049483602 @default.
- W2896658870 cites W2054772796 @default.
- W2896658870 cites W2065882669 @default.
- W2896658870 cites W2067346571 @default.
- W2896658870 cites W2071449266 @default.
- W2896658870 cites W2077677811 @default.
- W2896658870 cites W2083441748 @default.
- W2896658870 cites W2084846067 @default.
- W2896658870 cites W2086096279 @default.
- W2896658870 cites W2096737765 @default.
- W2896658870 cites W2097688201 @default.
- W2896658870 cites W2106279103 @default.
- W2896658870 cites W2106311483 @default.
- W2896658870 cites W2110304648 @default.
- W2896658870 cites W2110693908 @default.
- W2896658870 cites W2111147183 @default.
- W2896658870 cites W2116701244 @default.
- W2896658870 cites W2120430154 @default.
- W2896658870 cites W2122811196 @default.
- W2896658870 cites W2129277805 @default.
- W2896658870 cites W2131315823 @default.
- W2896658870 cites W2132048066 @default.
- W2896658870 cites W2140753590 @default.
- W2896658870 cites W2146302903 @default.
- W2896658870 cites W2157595929 @default.
- W2896658870 cites W2163922914 @default.
- W2896658870 cites W2285968993 @default.
- W2896658870 cites W229725927 @default.
- W2896658870 cites W2297736292 @default.
- W2896658870 cites W2326063701 @default.
- W2896658870 cites W2401679044 @default.
- W2896658870 cites W2410282112 @default.
- W2896658870 cites W2529627479 @default.
- W2896658870 cites W2533853894 @default.
- W2896658870 cites W2557738935 @default.
- W2896658870 cites W2581082771 @default.
- W2896658870 cites W2584038571 @default.
- W2896658870 cites W2595962374 @default.
- W2896658870 cites W2604895074 @default.
- W2896658870 cites W2620350742 @default.
- W2896658870 cites W2748339352 @default.
- W2896658870 cites W2765527079 @default.
- W2896658870 cites W2766166720 @default.
- W2896658870 cites W2766447205 @default.
- W2896658870 cites W2772246530 @default.
- W2896658870 cites W2778113922 @default.
- W2896658870 cites W2783201053 @default.
- W2896658870 cites W2785825652 @default.
- W2896658870 cites W2789130498 @default.
- W2896658870 cites W2797069348 @default.
- W2896658870 cites W2959239324 @default.
- W2896658870 cites W4234297355 @default.
- W2896658870 cites W4254241980 @default.
- W2896658870 cites W4302556119 @default.
- W2896658870 doi "https://doi.org/10.4253/wjge.v10.i10.239" @default.
- W2896658870 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6198310" @default.
- W2896658870 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30364792" @default.
- W2896658870 hasPublicationYear "2018" @default.
- W2896658870 type Work @default.
- W2896658870 sameAs 2896658870 @default.
- W2896658870 citedByCount "114" @default.
- W2896658870 countsByYear W28966588702019 @default.
- W2896658870 countsByYear W28966588702020 @default.
- W2896658870 countsByYear W28966588702021 @default.
- W2896658870 countsByYear W28966588702022 @default.
- W2896658870 countsByYear W28966588702023 @default.
- W2896658870 crossrefType "journal-article" @default.
- W2896658870 hasAuthorship W2896658870A5004080101 @default.
- W2896658870 hasAuthorship W2896658870A5014879891 @default.
- W2896658870 hasAuthorship W2896658870A5051116899 @default.
- W2896658870 hasAuthorship W2896658870A5088236048 @default.
- W2896658870 hasBestOaLocation W28966588701 @default.
- W2896658870 hasConcept C108583219 @default.