Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896660757> ?p ?o ?g. }
- W2896660757 endingPage "3483" @default.
- W2896660757 startingPage "3483" @default.
- W2896660757 abstract "G-Networks and their simplified version known as the Random Neural Network have often been used to classify data. In this paper, we present a use of the Random Neural Network to the early detection of potential of toxicity chemical compounds through the prediction of their bioactivity from the compounds’ physico-chemical structure, and propose that it be automated using machine learning (ML) techniques. Specifically the Random Neural Network is shown to be an effective analytical tool to this effect, and the approach is illustrated and compared with several ML techniques." @default.
- W2896660757 created "2018-10-26" @default.
- W2896660757 creator A5024426320 @default.
- W2896660757 creator A5035643040 @default.
- W2896660757 creator A5067996234 @default.
- W2896660757 date "2018-10-16" @default.
- W2896660757 modified "2023-10-15" @default.
- W2896660757 title "G-Networks to Predict the Outcome of Sensing of Toxicity" @default.
- W2896660757 cites W1678356000 @default.
- W2896660757 cites W1965427641 @default.
- W2896660757 cites W1968348737 @default.
- W2896660757 cites W1976406451 @default.
- W2896660757 cites W1980925810 @default.
- W2896660757 cites W1987301248 @default.
- W2896660757 cites W1988037271 @default.
- W2896660757 cites W1996503769 @default.
- W2896660757 cites W2006004974 @default.
- W2896660757 cites W2008095228 @default.
- W2896660757 cites W2028319341 @default.
- W2896660757 cites W2031314110 @default.
- W2896660757 cites W2032663983 @default.
- W2896660757 cites W2045643717 @default.
- W2896660757 cites W2056377128 @default.
- W2896660757 cites W2056494836 @default.
- W2896660757 cites W2062239025 @default.
- W2896660757 cites W2062427002 @default.
- W2896660757 cites W2074419909 @default.
- W2896660757 cites W2084300071 @default.
- W2896660757 cites W2090058128 @default.
- W2896660757 cites W2093289447 @default.
- W2896660757 cites W2112058534 @default.
- W2896660757 cites W2114326383 @default.
- W2896660757 cites W2118978333 @default.
- W2896660757 cites W2121777042 @default.
- W2896660757 cites W2121896394 @default.
- W2896660757 cites W2122025333 @default.
- W2896660757 cites W2122376145 @default.
- W2896660757 cites W2130095783 @default.
- W2896660757 cites W2144486134 @default.
- W2896660757 cites W2147374078 @default.
- W2896660757 cites W2148014386 @default.
- W2896660757 cites W2148143831 @default.
- W2896660757 cites W2149570311 @default.
- W2896660757 cites W2159887157 @default.
- W2896660757 cites W2162231234 @default.
- W2896660757 cites W2165977465 @default.
- W2896660757 cites W2293168792 @default.
- W2896660757 cites W2314414591 @default.
- W2896660757 cites W2560036901 @default.
- W2896660757 cites W2725399272 @default.
- W2896660757 cites W2736047945 @default.
- W2896660757 cites W2809634777 @default.
- W2896660757 cites W2810308864 @default.
- W2896660757 cites W650305524 @default.
- W2896660757 doi "https://doi.org/10.3390/s18103483" @default.
- W2896660757 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6210391" @default.
- W2896660757 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30332807" @default.
- W2896660757 hasPublicationYear "2018" @default.
- W2896660757 type Work @default.
- W2896660757 sameAs 2896660757 @default.
- W2896660757 citedByCount "2" @default.
- W2896660757 countsByYear W28966607572019 @default.
- W2896660757 countsByYear W28966607572020 @default.
- W2896660757 crossrefType "journal-article" @default.
- W2896660757 hasAuthorship W2896660757A5024426320 @default.
- W2896660757 hasAuthorship W2896660757A5035643040 @default.
- W2896660757 hasAuthorship W2896660757A5067996234 @default.
- W2896660757 hasBestOaLocation W28966607571 @default.
- W2896660757 hasConcept C119857082 @default.
- W2896660757 hasConcept C124101348 @default.
- W2896660757 hasConcept C144237770 @default.
- W2896660757 hasConcept C148220186 @default.
- W2896660757 hasConcept C154945302 @default.
- W2896660757 hasConcept C169258074 @default.
- W2896660757 hasConcept C178790620 @default.
- W2896660757 hasConcept C185592680 @default.
- W2896660757 hasConcept C2910804846 @default.
- W2896660757 hasConcept C29730261 @default.
- W2896660757 hasConcept C33923547 @default.
- W2896660757 hasConcept C41008148 @default.
- W2896660757 hasConcept C50644808 @default.
- W2896660757 hasConceptScore W2896660757C119857082 @default.
- W2896660757 hasConceptScore W2896660757C124101348 @default.
- W2896660757 hasConceptScore W2896660757C144237770 @default.
- W2896660757 hasConceptScore W2896660757C148220186 @default.
- W2896660757 hasConceptScore W2896660757C154945302 @default.
- W2896660757 hasConceptScore W2896660757C169258074 @default.
- W2896660757 hasConceptScore W2896660757C178790620 @default.
- W2896660757 hasConceptScore W2896660757C185592680 @default.
- W2896660757 hasConceptScore W2896660757C2910804846 @default.
- W2896660757 hasConceptScore W2896660757C29730261 @default.
- W2896660757 hasConceptScore W2896660757C33923547 @default.
- W2896660757 hasConceptScore W2896660757C41008148 @default.
- W2896660757 hasConceptScore W2896660757C50644808 @default.
- W2896660757 hasIssue "10" @default.
- W2896660757 hasLocation W28966607571 @default.
- W2896660757 hasLocation W28966607572 @default.
- W2896660757 hasLocation W28966607573 @default.