Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896661041> ?p ?o ?g. }
- W2896661041 endingPage "1634" @default.
- W2896661041 startingPage "1621" @default.
- W2896661041 abstract "Spatio-temporal series prediction has attracted increasing attention in the field of meteorology in recent years. The spatial and temporal joint effect makes predictions challenging. Most of the existing spatio-temporal prediction models are computationally complicated. To develop an accurate but easy-to-implement spatio-temporal prediction model, this paper designs a novel spatio-temporal prediction model based on echo state networks. For real-world observed meteorological data with randomness and large changes, we use a cubic spline method to bridge the gaps between the neighboring points, which results in a pleasingly smooth series. The interpolated series is later input into the spatio-temporal echo state networks, in which the spatial coefficients are computed by the elastic-net algorithm. This approach offers automatic selection and continuous shrinkage of the spatial variables. The proposed model provides an intuitive but effective approach to address the interaction of spatial and temporal effects. To demonstrate the practicality of the proposed model, we apply it to predict two real-world datasets: monthly precipitation series and daily air quality index series. Experimental results demonstrate that the proposed model achieves a normalized root-mean-square error of approximately 0.250 on both datasets. Similar results are achieved on the long short-term memory model, but the computation time of our proposed model is considerably shorter. It can be inferred that our proposed neural network model has advantages on predicting meteorological series over other models." @default.
- W2896661041 created "2018-10-26" @default.
- W2896661041 creator A5023931221 @default.
- W2896661041 creator A5032411522 @default.
- W2896661041 creator A5032636287 @default.
- W2896661041 creator A5037428599 @default.
- W2896661041 creator A5074514063 @default.
- W2896661041 date "2019-06-01" @default.
- W2896661041 modified "2023-10-16" @default.
- W2896661041 title "Spatio-Temporal Interpolated Echo State Network for Meteorological Series Prediction" @default.
- W2896661041 cites W1689711448 @default.
- W2896661041 cites W1969765329 @default.
- W2896661041 cites W1982870152 @default.
- W2896661041 cites W1987932920 @default.
- W2896661041 cites W1990352893 @default.
- W2896661041 cites W1994537880 @default.
- W2896661041 cites W1995427974 @default.
- W2896661041 cites W2003410902 @default.
- W2896661041 cites W2012148126 @default.
- W2896661041 cites W2017377889 @default.
- W2896661041 cites W2019207321 @default.
- W2896661041 cites W2020688906 @default.
- W2896661041 cites W2029967456 @default.
- W2896661041 cites W2031958278 @default.
- W2896661041 cites W2033381780 @default.
- W2896661041 cites W2036984001 @default.
- W2896661041 cites W2037024114 @default.
- W2896661041 cites W2038625427 @default.
- W2896661041 cites W2046509362 @default.
- W2896661041 cites W2047039932 @default.
- W2896661041 cites W2058147240 @default.
- W2896661041 cites W2058804598 @default.
- W2896661041 cites W2064675550 @default.
- W2896661041 cites W2068928057 @default.
- W2896661041 cites W2069218356 @default.
- W2896661041 cites W2083512948 @default.
- W2896661041 cites W2084001690 @default.
- W2896661041 cites W2117014758 @default.
- W2896661041 cites W2117439573 @default.
- W2896661041 cites W2118706537 @default.
- W2896661041 cites W2121805217 @default.
- W2896661041 cites W2122825543 @default.
- W2896661041 cites W2125091774 @default.
- W2896661041 cites W2133573607 @default.
- W2896661041 cites W2146096861 @default.
- W2896661041 cites W2146378653 @default.
- W2896661041 cites W2160599504 @default.
- W2896661041 cites W2163742764 @default.
- W2896661041 cites W2168956778 @default.
- W2896661041 cites W2294916050 @default.
- W2896661041 cites W2314582146 @default.
- W2896661041 cites W2317942309 @default.
- W2896661041 cites W2343815575 @default.
- W2896661041 cites W2344050291 @default.
- W2896661041 cites W2344432845 @default.
- W2896661041 cites W2405206665 @default.
- W2896661041 cites W2466630619 @default.
- W2896661041 cites W2476751262 @default.
- W2896661041 cites W2496675188 @default.
- W2896661041 cites W2525923793 @default.
- W2896661041 cites W2548409580 @default.
- W2896661041 cites W2580209006 @default.
- W2896661041 cites W2597948870 @default.
- W2896661041 cites W2738226240 @default.
- W2896661041 cites W2779129326 @default.
- W2896661041 cites W55912154 @default.
- W2896661041 doi "https://doi.org/10.1109/tnnls.2018.2869131" @default.
- W2896661041 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30307877" @default.
- W2896661041 hasPublicationYear "2019" @default.
- W2896661041 type Work @default.
- W2896661041 sameAs 2896661041 @default.
- W2896661041 citedByCount "27" @default.
- W2896661041 countsByYear W28966610412019 @default.
- W2896661041 countsByYear W28966610412020 @default.
- W2896661041 countsByYear W28966610412021 @default.
- W2896661041 countsByYear W28966610412022 @default.
- W2896661041 countsByYear W28966610412023 @default.
- W2896661041 crossrefType "journal-article" @default.
- W2896661041 hasAuthorship W2896661041A5023931221 @default.
- W2896661041 hasAuthorship W2896661041A5032411522 @default.
- W2896661041 hasAuthorship W2896661041A5032636287 @default.
- W2896661041 hasAuthorship W2896661041A5037428599 @default.
- W2896661041 hasAuthorship W2896661041A5074514063 @default.
- W2896661041 hasConcept C105795698 @default.
- W2896661041 hasConcept C11413529 @default.
- W2896661041 hasConcept C119857082 @default.
- W2896661041 hasConcept C124101348 @default.
- W2896661041 hasConcept C125112378 @default.
- W2896661041 hasConcept C143724316 @default.
- W2896661041 hasConcept C147168706 @default.
- W2896661041 hasConcept C151406439 @default.
- W2896661041 hasConcept C151730666 @default.
- W2896661041 hasConcept C154945302 @default.
- W2896661041 hasConcept C172025690 @default.
- W2896661041 hasConcept C33923547 @default.
- W2896661041 hasConcept C41008148 @default.
- W2896661041 hasConcept C50644808 @default.
- W2896661041 hasConcept C86803240 @default.