Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896668638> ?p ?o ?g. }
- W2896668638 endingPage "11" @default.
- W2896668638 startingPage "1" @default.
- W2896668638 abstract "To more accurately trigger data acquisition and reduce radiation exposure of coronary computed tomography angiography (CCTA), a multimodal framework utilizing both electrocardiography (ECG) and seismocardiography (SCG) for CCTA prospective gating is presented. Relying upon a three-layer artificial neural network that adaptively fuses individual ECG- and SCG-based quiescence predictions on a beat-by-beat basis, this framework yields a personalized quiescence prediction for each cardiac cycle. This framework was tested on seven healthy subjects (age: 22-48; m/f: 4/3) and eleven cardiac patients (age: 31-78; m/f: 6/5). Seventeen out of 18 benefited from the fusion-based prediction as compared to the ECG-only-based prediction, the traditional prospective gating method. Only one patient whose SCG was compromised by noise was more suitable for ECG-only-based prediction. On average, our fused ECG-SCG-based method improves cardiac quiescence prediction by 47% over ECG-only-based method; with both compared against the gold standard, B-mode echocardiography. Fusion-based prediction is also more resistant to heart rate variability than ECG-only- or SCG-only-based prediction. To assess the clinical value, the diagnostic quality of the CCTA reconstructed volumes from the quiescence derived from ECG-, SCG- and fusion-based predictions were graded by a board-certified radiologist using a Likert response format. Grading results indicated the fusion-based prediction improved diagnostic quality. ECG may be a sub-optimal modality for quiescence prediction and can be enhanced by the multimodal framework. The combination of ECG and SCG signals for quiescence prediction bears promise for a more personalized and reliable approach than ECG-only-based method to predict cardiac quiescence for prospective CCTA gating." @default.
- W2896668638 created "2018-10-26" @default.
- W2896668638 creator A5041099428 @default.
- W2896668638 creator A5053504360 @default.
- W2896668638 creator A5058142633 @default.
- W2896668638 creator A5064037990 @default.
- W2896668638 creator A5085708744 @default.
- W2896668638 date "2018-01-01" @default.
- W2896668638 modified "2023-10-14" @default.
- W2896668638 title "An Adaptive Seismocardiography (SCG)-ECG Multimodal Framework for Cardiac Gating Using Artificial Neural Networks" @default.
- W2896668638 cites W116827177 @default.
- W2896668638 cites W1493971325 @default.
- W2896668638 cites W1606556623 @default.
- W2896668638 cites W1978300338 @default.
- W2896668638 cites W1986041261 @default.
- W2896668638 cites W1990729297 @default.
- W2896668638 cites W2007729863 @default.
- W2896668638 cites W2014104962 @default.
- W2896668638 cites W2015332508 @default.
- W2896668638 cites W2022598420 @default.
- W2896668638 cites W2026005705 @default.
- W2896668638 cites W2029636315 @default.
- W2896668638 cites W2045841137 @default.
- W2896668638 cites W2064548684 @default.
- W2896668638 cites W2078107160 @default.
- W2896668638 cites W2079084424 @default.
- W2896668638 cites W2081419782 @default.
- W2896668638 cites W2088599378 @default.
- W2896668638 cites W2091670800 @default.
- W2896668638 cites W2095737783 @default.
- W2896668638 cites W2108954953 @default.
- W2896668638 cites W2111772099 @default.
- W2896668638 cites W2114343102 @default.
- W2896668638 cites W2118639351 @default.
- W2896668638 cites W2134643078 @default.
- W2896668638 cites W2148325642 @default.
- W2896668638 cites W2149755434 @default.
- W2896668638 cites W2161709476 @default.
- W2896668638 cites W2162273778 @default.
- W2896668638 cites W2259901291 @default.
- W2896668638 cites W2293235042 @default.
- W2896668638 cites W2728582907 @default.
- W2896668638 cites W2752825657 @default.
- W2896668638 cites W4240619451 @default.
- W2896668638 cites W4241271336 @default.
- W2896668638 cites W4298441315 @default.
- W2896668638 doi "https://doi.org/10.1109/jtehm.2018.2869141" @default.
- W2896668638 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6204924" @default.
- W2896668638 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30405976" @default.
- W2896668638 hasPublicationYear "2018" @default.
- W2896668638 type Work @default.
- W2896668638 sameAs 2896668638 @default.
- W2896668638 citedByCount "16" @default.
- W2896668638 countsByYear W28966686382019 @default.
- W2896668638 countsByYear W28966686382020 @default.
- W2896668638 countsByYear W28966686382021 @default.
- W2896668638 countsByYear W28966686382022 @default.
- W2896668638 countsByYear W28966686382023 @default.
- W2896668638 crossrefType "journal-article" @default.
- W2896668638 hasAuthorship W2896668638A5041099428 @default.
- W2896668638 hasAuthorship W2896668638A5053504360 @default.
- W2896668638 hasAuthorship W2896668638A5058142633 @default.
- W2896668638 hasAuthorship W2896668638A5064037990 @default.
- W2896668638 hasAuthorship W2896668638A5085708744 @default.
- W2896668638 hasBestOaLocation W28966686381 @default.
- W2896668638 hasConcept C111773187 @default.
- W2896668638 hasConcept C126322002 @default.
- W2896668638 hasConcept C153180895 @default.
- W2896668638 hasConcept C154945302 @default.
- W2896668638 hasConcept C164705383 @default.
- W2896668638 hasConcept C194544171 @default.
- W2896668638 hasConcept C2776127602 @default.
- W2896668638 hasConcept C2777953023 @default.
- W2896668638 hasConcept C2780040984 @default.
- W2896668638 hasConcept C41008148 @default.
- W2896668638 hasConcept C42407357 @default.
- W2896668638 hasConcept C50644808 @default.
- W2896668638 hasConcept C71635504 @default.
- W2896668638 hasConcept C71924100 @default.
- W2896668638 hasConcept C84393581 @default.
- W2896668638 hasConceptScore W2896668638C111773187 @default.
- W2896668638 hasConceptScore W2896668638C126322002 @default.
- W2896668638 hasConceptScore W2896668638C153180895 @default.
- W2896668638 hasConceptScore W2896668638C154945302 @default.
- W2896668638 hasConceptScore W2896668638C164705383 @default.
- W2896668638 hasConceptScore W2896668638C194544171 @default.
- W2896668638 hasConceptScore W2896668638C2776127602 @default.
- W2896668638 hasConceptScore W2896668638C2777953023 @default.
- W2896668638 hasConceptScore W2896668638C2780040984 @default.
- W2896668638 hasConceptScore W2896668638C41008148 @default.
- W2896668638 hasConceptScore W2896668638C42407357 @default.
- W2896668638 hasConceptScore W2896668638C50644808 @default.
- W2896668638 hasConceptScore W2896668638C71635504 @default.
- W2896668638 hasConceptScore W2896668638C71924100 @default.
- W2896668638 hasConceptScore W2896668638C84393581 @default.
- W2896668638 hasFunder F4320306076 @default.
- W2896668638 hasFunder F4320337363 @default.
- W2896668638 hasFunder F4320337472 @default.