Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896670296> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2896670296 abstract "Community detection finds its applications in the biological networks and social networks, like predicting functional modules of proteins, recommending items to the users based on their interests, and exploring potential relationships among persons. Modularity is a widely-used criterion for evaluating the quality of the detected community structures. Due to modularity maximization is an NP-hard problem, developing the approximate algorithms with good accuracy and computational complexity is challenging and of great significance. In this paper, a novel algorithm based on competitive Hopfield neural network (CHNN for short) for maximizing modularity is proposed, where a new energy function and a two-dimensional topology is designed, and the winner-takes-all strategy for updating the outputs of neurons in each row of CHNN is adopted. Moreover, the convergence of the proposed algorithm is proved. The algorithm is capable of converging fast and achieving good modularity. Experimental results on multiple empirical and synthetic networks show the proposed algorithm can effectively and efficiently identify the community structures of the networks, and has the competitive performance compared to several other baseline algorithms for community detection." @default.
- W2896670296 created "2018-10-26" @default.
- W2896670296 creator A5009380646 @default.
- W2896670296 creator A5018475444 @default.
- W2896670296 creator A5035610081 @default.
- W2896670296 creator A5062324929 @default.
- W2896670296 date "2018-07-01" @default.
- W2896670296 modified "2023-09-23" @default.
- W2896670296 title "Detecting Communities in Networks Using Competitive Hopfield Neural Network" @default.
- W2896670296 cites W1597286183 @default.
- W2896670296 cites W1692247819 @default.
- W2896670296 cites W1756737390 @default.
- W2896670296 cites W1971421925 @default.
- W2896670296 cites W1982322675 @default.
- W2896670296 cites W1985625141 @default.
- W2896670296 cites W1996760916 @default.
- W2896670296 cites W2005372336 @default.
- W2896670296 cites W2015953751 @default.
- W2896670296 cites W2029373408 @default.
- W2896670296 cites W2030696657 @default.
- W2896670296 cites W2033193852 @default.
- W2896670296 cites W2036496810 @default.
- W2896670296 cites W2047940964 @default.
- W2896670296 cites W2051741861 @default.
- W2896670296 cites W2057504236 @default.
- W2896670296 cites W2089458547 @default.
- W2896670296 cites W2095293504 @default.
- W2896670296 cites W2098900497 @default.
- W2896670296 cites W2100628741 @default.
- W2896670296 cites W2101580881 @default.
- W2896670296 cites W2110553827 @default.
- W2896670296 cites W2110620844 @default.
- W2896670296 cites W2111002549 @default.
- W2896670296 cites W2119998616 @default.
- W2896670296 cites W2127048411 @default.
- W2896670296 cites W2128084896 @default.
- W2896670296 cites W2131681506 @default.
- W2896670296 cites W2132202037 @default.
- W2896670296 cites W2136713486 @default.
- W2896670296 cites W2148606196 @default.
- W2896670296 cites W2151936673 @default.
- W2896670296 cites W2156028561 @default.
- W2896670296 cites W2157082398 @default.
- W2896670296 cites W2158908968 @default.
- W2896670296 cites W2160220393 @default.
- W2896670296 cites W2164998314 @default.
- W2896670296 cites W2339289145 @default.
- W2896670296 cites W3101413764 @default.
- W2896670296 cites W3103786587 @default.
- W2896670296 cites W3126033509 @default.
- W2896670296 doi "https://doi.org/10.1109/ijcnn.2018.8489362" @default.
- W2896670296 hasPublicationYear "2018" @default.
- W2896670296 type Work @default.
- W2896670296 sameAs 2896670296 @default.
- W2896670296 citedByCount "1" @default.
- W2896670296 countsByYear W28966702962019 @default.
- W2896670296 crossrefType "proceedings-article" @default.
- W2896670296 hasAuthorship W2896670296A5009380646 @default.
- W2896670296 hasAuthorship W2896670296A5018475444 @default.
- W2896670296 hasAuthorship W2896670296A5035610081 @default.
- W2896670296 hasAuthorship W2896670296A5062324929 @default.
- W2896670296 hasConcept C154945302 @default.
- W2896670296 hasConcept C41008148 @default.
- W2896670296 hasConcept C46421273 @default.
- W2896670296 hasConcept C50644808 @default.
- W2896670296 hasConceptScore W2896670296C154945302 @default.
- W2896670296 hasConceptScore W2896670296C41008148 @default.
- W2896670296 hasConceptScore W2896670296C46421273 @default.
- W2896670296 hasConceptScore W2896670296C50644808 @default.
- W2896670296 hasLocation W28966702961 @default.
- W2896670296 hasOpenAccess W2896670296 @default.
- W2896670296 hasPrimaryLocation W28966702961 @default.
- W2896670296 hasRelatedWork W1583137156 @default.
- W2896670296 hasRelatedWork W2061881786 @default.
- W2896670296 hasRelatedWork W2122478253 @default.
- W2896670296 hasRelatedWork W2122592112 @default.
- W2896670296 hasRelatedWork W2365192768 @default.
- W2896670296 hasRelatedWork W2384418592 @default.
- W2896670296 hasRelatedWork W2386387936 @default.
- W2896670296 hasRelatedWork W2525596608 @default.
- W2896670296 hasRelatedWork W3143729576 @default.
- W2896670296 hasRelatedWork W2610359609 @default.
- W2896670296 isParatext "false" @default.
- W2896670296 isRetracted "false" @default.
- W2896670296 magId "2896670296" @default.
- W2896670296 workType "article" @default.