Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896670900> ?p ?o ?g. }
- W2896670900 endingPage "317" @default.
- W2896670900 startingPage "305" @default.
- W2896670900 abstract "Introduction: Cardiovascular diseases (CVDs) are chronic, heterogeneous diseases which are generally classified according to clinical presentation. However, the arrival of big data and analytical methods presents an opportunity to better understand these disease entities.Areas covered: This review article highlights: (1) the potential of a big data approaches with emerging technology to explore the heterogeneity of CVDs; (2) current challenges of a big data approach; and (3) the future of precision cardiovascular medicine.Expert commentary: Overall, most of the current data utilizing big data techniques remain largely descriptive and retrospective. Precision medicine, or N-of-1, approaches have not yet allowed for consistent interpretation since there is no ‘standard’ of how to best apply treatment approaches in a field where evidence-based medicine is based largely on randomized controlled trials. The risk score and biomarker-based approaches have been utilized with some ‘validation’ studies, but more in-depth biomarkers (i.e. pharmacogenomic biomarkers) have failed to demonstrate incremental benefits. Exploring novel CVD phenotypes by integrating existing medical variables, multi-omics, lifestyle, and environmental data using artificial intelligence is vitally important and may allow us to digitize future clinical trials, potentially leading to novel therapies." @default.
- W2896670900 created "2018-10-26" @default.
- W2896670900 creator A5005346285 @default.
- W2896670900 creator A5035023430 @default.
- W2896670900 creator A5044514674 @default.
- W2896670900 creator A5085920644 @default.
- W2896670900 date "2018-09-03" @default.
- W2896670900 modified "2023-10-17" @default.
- W2896670900 title "Big data, artificial intelligence, and cardiovascular precision medicine" @default.
- W2896670900 cites W1803035418 @default.
- W2896670900 cites W1867586965 @default.
- W2896670900 cites W1971009828 @default.
- W2896670900 cites W1976196376 @default.
- W2896670900 cites W1997057722 @default.
- W2896670900 cites W2010351059 @default.
- W2896670900 cites W2042313694 @default.
- W2896670900 cites W2042898181 @default.
- W2896670900 cites W2068127873 @default.
- W2896670900 cites W2107577705 @default.
- W2896670900 cites W2108388217 @default.
- W2896670900 cites W2109705034 @default.
- W2896670900 cites W2123106029 @default.
- W2896670900 cites W2128251452 @default.
- W2896670900 cites W2143871529 @default.
- W2896670900 cites W2145581335 @default.
- W2896670900 cites W2157823046 @default.
- W2896670900 cites W2166441861 @default.
- W2896670900 cites W2168610667 @default.
- W2896670900 cites W2273316012 @default.
- W2896670900 cites W2287586640 @default.
- W2896670900 cites W2292640198 @default.
- W2896670900 cites W2296350496 @default.
- W2896670900 cites W2302877473 @default.
- W2896670900 cites W2309389238 @default.
- W2896670900 cites W2344273352 @default.
- W2896670900 cites W2346275821 @default.
- W2896670900 cites W2411485578 @default.
- W2896670900 cites W2510973425 @default.
- W2896670900 cites W2522531501 @default.
- W2896670900 cites W2540671532 @default.
- W2896670900 cites W2548397675 @default.
- W2896670900 cites W2565522107 @default.
- W2896670900 cites W2567352823 @default.
- W2896670900 cites W2588904304 @default.
- W2896670900 cites W2591834500 @default.
- W2896670900 cites W2606224273 @default.
- W2896670900 cites W2606592330 @default.
- W2896670900 cites W2612716641 @default.
- W2896670900 cites W2616225794 @default.
- W2896670900 cites W2617110182 @default.
- W2896670900 cites W2621966678 @default.
- W2896670900 cites W2725924843 @default.
- W2896670900 cites W2738385920 @default.
- W2896670900 cites W2749365796 @default.
- W2896670900 cites W2750718197 @default.
- W2896670900 cites W2753007908 @default.
- W2896670900 cites W2765491891 @default.
- W2896670900 cites W2766452847 @default.
- W2896670900 cites W2767707945 @default.
- W2896670900 cites W2775276874 @default.
- W2896670900 cites W2775415471 @default.
- W2896670900 cites W2781661799 @default.
- W2896670900 cites W2784094750 @default.
- W2896670900 cites W2789860708 @default.
- W2896670900 cites W2791393656 @default.
- W2896670900 cites W2792028243 @default.
- W2896670900 cites W2792705209 @default.
- W2896670900 cites W2793247691 @default.
- W2896670900 cites W2793950805 @default.
- W2896670900 cites W2794819865 @default.
- W2896670900 cites W2795465683 @default.
- W2896670900 cites W2799605298 @default.
- W2896670900 cites W2804882164 @default.
- W2896670900 cites W2807593075 @default.
- W2896670900 cites W2835818200 @default.
- W2896670900 cites W2886152292 @default.
- W2896670900 cites W2887500871 @default.
- W2896670900 cites W4254199405 @default.
- W2896670900 doi "https://doi.org/10.1080/23808993.2018.1528871" @default.
- W2896670900 hasPublicationYear "2018" @default.
- W2896670900 type Work @default.
- W2896670900 sameAs 2896670900 @default.
- W2896670900 citedByCount "18" @default.
- W2896670900 countsByYear W28966709002019 @default.
- W2896670900 countsByYear W28966709002020 @default.
- W2896670900 countsByYear W28966709002021 @default.
- W2896670900 countsByYear W28966709002022 @default.
- W2896670900 countsByYear W28966709002023 @default.
- W2896670900 crossrefType "journal-article" @default.
- W2896670900 hasAuthorship W2896670900A5005346285 @default.
- W2896670900 hasAuthorship W2896670900A5035023430 @default.
- W2896670900 hasAuthorship W2896670900A5044514674 @default.
- W2896670900 hasAuthorship W2896670900A5085920644 @default.
- W2896670900 hasConcept C124101348 @default.
- W2896670900 hasConcept C142724271 @default.
- W2896670900 hasConcept C154945302 @default.
- W2896670900 hasConcept C163763905 @default.
- W2896670900 hasConcept C170734499 @default.