Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896683552> ?p ?o ?g. }
- W2896683552 endingPage "88" @default.
- W2896683552 startingPage "83" @default.
- W2896683552 abstract "In the fusion process of medical computed tomography (CT) and magnetic resonance image (MRI), traditional multiscale methods often reduce the contrast of fused images. Although sparse representation (SR) methods overcome this shortcoming, they are often too smooth along the strong edges of the fusion image. To overcome these shortcomings, CT and MRI image fusion based on multiscale decomposition method and hybrid approach is proposed. There are three main steps. First, the cartoon parts and texture parts of CT and MRI are obtained by the improved image decomposition method using global sparse gradients. Second, the large structure cartoon parts are fused using the specific cartoon dictionary and the ‘L1-max norm’ principle. The textured parts are fused using non-subsampled contourlet transformation (NSCT) and the maximum energy rule. Finally, the final result is obtained by superimposing the fused cartoon part and the fused texture part. The experimental results demonstrate that the proposed method outperforms the state-of-the-art method SR and NSCT in terms of visual effect and objective quality." @default.
- W2896683552 created "2018-10-26" @default.
- W2896683552 creator A5013965758 @default.
- W2896683552 creator A5020220235 @default.
- W2896683552 creator A5046112287 @default.
- W2896683552 creator A5050373463 @default.
- W2896683552 creator A5069283067 @default.
- W2896683552 creator A5083016011 @default.
- W2896683552 date "2019-01-01" @default.
- W2896683552 modified "2023-10-18" @default.
- W2896683552 title "CT and MRI image fusion based on multiscale decomposition method and hybrid approach" @default.
- W2896683552 cites W1763453483 @default.
- W2896683552 cites W1965557194 @default.
- W2896683552 cites W1997480692 @default.
- W2896683552 cites W2013756948 @default.
- W2896683552 cites W2025133197 @default.
- W2896683552 cites W2026651590 @default.
- W2896683552 cites W2034995331 @default.
- W2896683552 cites W2066630786 @default.
- W2896683552 cites W2066667210 @default.
- W2896683552 cites W2091484864 @default.
- W2896683552 cites W2112868428 @default.
- W2896683552 cites W2115073229 @default.
- W2896683552 cites W2123597619 @default.
- W2896683552 cites W2131168375 @default.
- W2896683552 cites W2142060261 @default.
- W2896683552 cites W2146353910 @default.
- W2896683552 cites W2160547390 @default.
- W2896683552 cites W2168783614 @default.
- W2896683552 cites W2170163526 @default.
- W2896683552 cites W2256359941 @default.
- W2896683552 cites W2303172903 @default.
- W2896683552 cites W2346469533 @default.
- W2896683552 cites W2474462684 @default.
- W2896683552 cites W2489975106 @default.
- W2896683552 cites W2522114553 @default.
- W2896683552 cites W2576108266 @default.
- W2896683552 cites W2744019306 @default.
- W2896683552 cites W418408683 @default.
- W2896683552 doi "https://doi.org/10.1049/iet-ipr.2018.5720" @default.
- W2896683552 hasPublicationYear "2019" @default.
- W2896683552 type Work @default.
- W2896683552 sameAs 2896683552 @default.
- W2896683552 citedByCount "15" @default.
- W2896683552 countsByYear W28966835522019 @default.
- W2896683552 countsByYear W28966835522020 @default.
- W2896683552 countsByYear W28966835522021 @default.
- W2896683552 countsByYear W28966835522022 @default.
- W2896683552 countsByYear W28966835522023 @default.
- W2896683552 crossrefType "journal-article" @default.
- W2896683552 hasAuthorship W2896683552A5013965758 @default.
- W2896683552 hasAuthorship W2896683552A5020220235 @default.
- W2896683552 hasAuthorship W2896683552A5046112287 @default.
- W2896683552 hasAuthorship W2896683552A5050373463 @default.
- W2896683552 hasAuthorship W2896683552A5069283067 @default.
- W2896683552 hasAuthorship W2896683552A5083016011 @default.
- W2896683552 hasBestOaLocation W28966835521 @default.
- W2896683552 hasConcept C104317684 @default.
- W2896683552 hasConcept C115961682 @default.
- W2896683552 hasConcept C124066611 @default.
- W2896683552 hasConcept C126838900 @default.
- W2896683552 hasConcept C138885662 @default.
- W2896683552 hasConcept C143409427 @default.
- W2896683552 hasConcept C153180895 @default.
- W2896683552 hasConcept C154945302 @default.
- W2896683552 hasConcept C158525013 @default.
- W2896683552 hasConcept C17744445 @default.
- W2896683552 hasConcept C185592680 @default.
- W2896683552 hasConcept C191795146 @default.
- W2896683552 hasConcept C196216189 @default.
- W2896683552 hasConcept C199539241 @default.
- W2896683552 hasConcept C204241405 @default.
- W2896683552 hasConcept C20479862 @default.
- W2896683552 hasConcept C2778971668 @default.
- W2896683552 hasConcept C31972630 @default.
- W2896683552 hasConcept C41008148 @default.
- W2896683552 hasConcept C41895202 @default.
- W2896683552 hasConcept C47432892 @default.
- W2896683552 hasConcept C55493867 @default.
- W2896683552 hasConcept C69744172 @default.
- W2896683552 hasConcept C71924100 @default.
- W2896683552 hasConceptScore W2896683552C104317684 @default.
- W2896683552 hasConceptScore W2896683552C115961682 @default.
- W2896683552 hasConceptScore W2896683552C124066611 @default.
- W2896683552 hasConceptScore W2896683552C126838900 @default.
- W2896683552 hasConceptScore W2896683552C138885662 @default.
- W2896683552 hasConceptScore W2896683552C143409427 @default.
- W2896683552 hasConceptScore W2896683552C153180895 @default.
- W2896683552 hasConceptScore W2896683552C154945302 @default.
- W2896683552 hasConceptScore W2896683552C158525013 @default.
- W2896683552 hasConceptScore W2896683552C17744445 @default.
- W2896683552 hasConceptScore W2896683552C185592680 @default.
- W2896683552 hasConceptScore W2896683552C191795146 @default.
- W2896683552 hasConceptScore W2896683552C196216189 @default.
- W2896683552 hasConceptScore W2896683552C199539241 @default.
- W2896683552 hasConceptScore W2896683552C204241405 @default.
- W2896683552 hasConceptScore W2896683552C20479862 @default.
- W2896683552 hasConceptScore W2896683552C2778971668 @default.