Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896685184> ?p ?o ?g. }
- W2896685184 endingPage "51" @default.
- W2896685184 startingPage "37" @default.
- W2896685184 abstract "Big data is increasingly available in all areas of manufacturing and operations, which presents an opportunity for better decision making and discovery of the next generation of innovative technologies. Recently, there have been substantial developments in the field of patent analytics, which describes the science of analysing large amounts of patent information to discover trends. We define Intellectual Property Analytics (IPA) as the data science of analysing large amount of IP information, to discover relationships, trends and patterns for decision making. In this paper, we contribute to the ongoing discussion on the use of intellectual property analytics methods, i.e artificial intelligence methods, machine learning and deep learning approaches, to analyse intellectual property data. This literature review follows a narrative approach with search strategy, where we present the state-of-the-art in intellectual property analytics by reviewing 57 recent articles. The bibliographic information of the articles are analysed, followed by a discussion of the articles divided in four main categories: knowledge management, technology management, economic value, and extraction and effective management of information. We hope research scholars and industrial users, may find this review helpful when searching for the latest research efforts pertaining to intellectual property analytics." @default.
- W2896685184 created "2018-10-26" @default.
- W2896685184 creator A5000899357 @default.
- W2896685184 creator A5038671660 @default.
- W2896685184 date "2018-12-01" @default.
- W2896685184 modified "2023-10-14" @default.
- W2896685184 title "The state-of-the-art on Intellectual Property Analytics (IPA): A literature review on artificial intelligence, machine learning and deep learning methods for analysing intellectual property (IP) data" @default.
- W2896685184 cites W1902911321 @default.
- W2896685184 cites W1969030656 @default.
- W2896685184 cites W1969118544 @default.
- W2896685184 cites W1972224880 @default.
- W2896685184 cites W1973298395 @default.
- W2896685184 cites W1982122985 @default.
- W2896685184 cites W1984775481 @default.
- W2896685184 cites W1987708126 @default.
- W2896685184 cites W1989307299 @default.
- W2896685184 cites W1996171418 @default.
- W2896685184 cites W2007876168 @default.
- W2896685184 cites W2008846076 @default.
- W2896685184 cites W2013958462 @default.
- W2896685184 cites W2020466859 @default.
- W2896685184 cites W2022623101 @default.
- W2896685184 cites W2022986287 @default.
- W2896685184 cites W2029646946 @default.
- W2896685184 cites W2035792097 @default.
- W2896685184 cites W2040165443 @default.
- W2896685184 cites W2042469415 @default.
- W2896685184 cites W2054712770 @default.
- W2896685184 cites W2069414289 @default.
- W2896685184 cites W2079392363 @default.
- W2896685184 cites W2083776263 @default.
- W2896685184 cites W2086004519 @default.
- W2896685184 cites W2091612883 @default.
- W2896685184 cites W2095596879 @default.
- W2896685184 cites W2098118776 @default.
- W2896685184 cites W2106116881 @default.
- W2896685184 cites W2109127850 @default.
- W2896685184 cites W2110129303 @default.
- W2896685184 cites W2111619626 @default.
- W2896685184 cites W2145342854 @default.
- W2896685184 cites W2146235381 @default.
- W2896685184 cites W2149369282 @default.
- W2896685184 cites W2152953875 @default.
- W2896685184 cites W2181646242 @default.
- W2896685184 cites W2193173381 @default.
- W2896685184 cites W2212385324 @default.
- W2896685184 cites W2288737075 @default.
- W2896685184 cites W2296251859 @default.
- W2896685184 cites W2313264820 @default.
- W2896685184 cites W2338305720 @default.
- W2896685184 cites W2339543475 @default.
- W2896685184 cites W2347081127 @default.
- W2896685184 cites W2357069867 @default.
- W2896685184 cites W2431486331 @default.
- W2896685184 cites W2474389090 @default.
- W2896685184 cites W2508445749 @default.
- W2896685184 cites W2519468584 @default.
- W2896685184 cites W2528605693 @default.
- W2896685184 cites W2586856233 @default.
- W2896685184 cites W2586936406 @default.
- W2896685184 cites W2602267091 @default.
- W2896685184 cites W2605916149 @default.
- W2896685184 cites W2612044071 @default.
- W2896685184 cites W2618249137 @default.
- W2896685184 cites W2735531900 @default.
- W2896685184 cites W2747878338 @default.
- W2896685184 cites W2750126764 @default.
- W2896685184 cites W2753416323 @default.
- W2896685184 cites W2753986748 @default.
- W2896685184 cites W2768852601 @default.
- W2896685184 cites W2788227286 @default.
- W2896685184 doi "https://doi.org/10.1016/j.wpi.2018.07.002" @default.
- W2896685184 hasPublicationYear "2018" @default.
- W2896685184 type Work @default.
- W2896685184 sameAs 2896685184 @default.
- W2896685184 citedByCount "107" @default.
- W2896685184 countsByYear W28966851842019 @default.
- W2896685184 countsByYear W28966851842020 @default.
- W2896685184 countsByYear W28966851842021 @default.
- W2896685184 countsByYear W28966851842022 @default.
- W2896685184 countsByYear W28966851842023 @default.
- W2896685184 crossrefType "journal-article" @default.
- W2896685184 hasAuthorship W2896685184A5000899357 @default.
- W2896685184 hasAuthorship W2896685184A5038671660 @default.
- W2896685184 hasBestOaLocation W28966851841 @default.
- W2896685184 hasConcept C111472728 @default.
- W2896685184 hasConcept C111919701 @default.
- W2896685184 hasConcept C124101348 @default.
- W2896685184 hasConcept C138885662 @default.
- W2896685184 hasConcept C154945302 @default.
- W2896685184 hasConcept C189950617 @default.
- W2896685184 hasConcept C202444582 @default.
- W2896685184 hasConcept C2522767166 @default.
- W2896685184 hasConcept C2767350 @default.
- W2896685184 hasConcept C33923547 @default.
- W2896685184 hasConcept C34974158 @default.
- W2896685184 hasConcept C41008148 @default.
- W2896685184 hasConcept C56739046 @default.