Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896688833> ?p ?o ?g. }
- W2896688833 endingPage "3178" @default.
- W2896688833 startingPage "3178" @default.
- W2896688833 abstract "Gene regulatory network (GRN) inference can understand the growth and development of animals and plants, and reveal the mystery of biology. Many computational approaches have been proposed to infer GRN. However, these inference approaches have hardly met the need of modeling, and the reducing redundancy methods based on individual information theory method have bad universality and stability. To overcome the limitations and shortcomings, this thesis proposes a novel algorithm, named HSCVFNT, to infer gene regulatory network with time-delayed regulations by utilizing a hybrid scoring method and complex-valued flexible neural network (CVFNT). The regulations of each target gene can be obtained by iteratively performing HSCVFNT. For each target gene, the HSCVFNT algorithm utilizes a novel scoring method based on time-delayed mutual information (TDMI), time-delayed maximum information coefficient (TDMIC) and time-delayed correlation coefficient (TDCC), to reduce the redundancy of regulatory relationships and obtain the candidate regulatory factor set. Then, the TDCC method is utilized to create time-delayed gene expression time-series matrix. Finally, a complex-valued flexible neural tree model is proposed to infer the time-delayed regulations of each target gene with the time-delayed time-series matrix. Three real time-series expression datasets from (Save Our Soul) SOS DNA repair system in E. coli and Saccharomyces cerevisiae are utilized to evaluate the performance of the HSCVFNT algorithm. As a result, HSCVFNT obtains outstanding F-scores of 0.923, 0.8 and 0.625 for SOS network and (In vivo Reverse-Engineering and Modeling Assessment) IRMA network inference, respectively, which are 5.5%, 14.3% and 72.2% higher than the best performance of other state-of-the-art GRN inference methods and time-delayed methods." @default.
- W2896688833 created "2018-10-26" @default.
- W2896688833 creator A5007584947 @default.
- W2896688833 creator A5020980410 @default.
- W2896688833 creator A5030950144 @default.
- W2896688833 creator A5036479222 @default.
- W2896688833 creator A5060381913 @default.
- W2896688833 creator A5072679629 @default.
- W2896688833 date "2018-10-15" @default.
- W2896688833 modified "2023-10-05" @default.
- W2896688833 title "HSCVFNT: Inference of Time-Delayed Gene Regulatory Network Based on Complex-Valued Flexible Neural Tree Model" @default.
- W2896688833 cites W1175879704 @default.
- W2896688833 cites W131156677 @default.
- W2896688833 cites W1707446633 @default.
- W2896688833 cites W1877666302 @default.
- W2896688833 cites W1932912927 @default.
- W2896688833 cites W1978524241 @default.
- W2896688833 cites W1996264210 @default.
- W2896688833 cites W2005936873 @default.
- W2896688833 cites W2010389255 @default.
- W2896688833 cites W2012115555 @default.
- W2896688833 cites W2019851168 @default.
- W2896688833 cites W2021880285 @default.
- W2896688833 cites W2038012561 @default.
- W2896688833 cites W2039708496 @default.
- W2896688833 cites W2080460674 @default.
- W2896688833 cites W2092128861 @default.
- W2896688833 cites W2095622082 @default.
- W2896688833 cites W2097236507 @default.
- W2896688833 cites W2101481512 @default.
- W2896688833 cites W2106927126 @default.
- W2896688833 cites W2108421561 @default.
- W2896688833 cites W2113562505 @default.
- W2896688833 cites W2113771037 @default.
- W2896688833 cites W2122708083 @default.
- W2896688833 cites W2126874285 @default.
- W2896688833 cites W2136988691 @default.
- W2896688833 cites W2140962554 @default.
- W2896688833 cites W2143978378 @default.
- W2896688833 cites W2144955380 @default.
- W2896688833 cites W2147710851 @default.
- W2896688833 cites W2151098983 @default.
- W2896688833 cites W2152992255 @default.
- W2896688833 cites W2157581457 @default.
- W2896688833 cites W2162864159 @default.
- W2896688833 cites W2165700458 @default.
- W2896688833 cites W2169832530 @default.
- W2896688833 cites W2171763327 @default.
- W2896688833 cites W2290701356 @default.
- W2896688833 cites W2409401342 @default.
- W2896688833 cites W2485640287 @default.
- W2896688833 cites W2498761000 @default.
- W2896688833 cites W2517377683 @default.
- W2896688833 cites W2518750490 @default.
- W2896688833 cites W2521877993 @default.
- W2896688833 cites W2569517805 @default.
- W2896688833 cites W2586478664 @default.
- W2896688833 cites W2608530005 @default.
- W2896688833 cites W2614590724 @default.
- W2896688833 cites W2744465043 @default.
- W2896688833 cites W2757234574 @default.
- W2896688833 cites W2759742634 @default.
- W2896688833 cites W2767496117 @default.
- W2896688833 cites W2803954745 @default.
- W2896688833 cites W2891656133 @default.
- W2896688833 cites W4232920930 @default.
- W2896688833 cites W3101679758 @default.
- W2896688833 doi "https://doi.org/10.3390/ijms19103178" @default.
- W2896688833 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6214043" @default.
- W2896688833 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30326663" @default.
- W2896688833 hasPublicationYear "2018" @default.
- W2896688833 type Work @default.
- W2896688833 sameAs 2896688833 @default.
- W2896688833 citedByCount "8" @default.
- W2896688833 countsByYear W28966888332018 @default.
- W2896688833 countsByYear W28966888332019 @default.
- W2896688833 countsByYear W28966888332021 @default.
- W2896688833 countsByYear W28966888332022 @default.
- W2896688833 countsByYear W28966888332023 @default.
- W2896688833 crossrefType "journal-article" @default.
- W2896688833 hasAuthorship W2896688833A5007584947 @default.
- W2896688833 hasAuthorship W2896688833A5020980410 @default.
- W2896688833 hasAuthorship W2896688833A5030950144 @default.
- W2896688833 hasAuthorship W2896688833A5036479222 @default.
- W2896688833 hasAuthorship W2896688833A5060381913 @default.
- W2896688833 hasAuthorship W2896688833A5072679629 @default.
- W2896688833 hasBestOaLocation W28966888331 @default.
- W2896688833 hasConcept C104317684 @default.
- W2896688833 hasConcept C111919701 @default.
- W2896688833 hasConcept C11413529 @default.
- W2896688833 hasConcept C119857082 @default.
- W2896688833 hasConcept C124101348 @default.
- W2896688833 hasConcept C150194340 @default.
- W2896688833 hasConcept C152124472 @default.
- W2896688833 hasConcept C154945302 @default.
- W2896688833 hasConcept C2776214188 @default.
- W2896688833 hasConcept C311688 @default.
- W2896688833 hasConcept C41008148 @default.