Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896694928> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2896694928 abstract "Benefitting from the development of social platforms, more and more users tend to register multiple accounts on different social networks. Linking user identities across multiple online social networks based on user behavior patterns is considerable for network supervision and information tracking. However, a user’s online behavior in a social network is dynamic. The user profile may be changed due to some specific reasons such as user migration or job changes. Thus, catching the dynamics of evolutionary user data and collecting the latest user features are important and challenging issues in the area of user identity linkage. Inspired by deep learning models such as word2vec and Deep Walk, this paper proposes an integrated framework to catch the dynamic user data by supplementing vacant features and updating outdated features in data sources. The framework firstly represents all textual and structural user data into Iow- dimensional latent spaces by utilizing word2vec and DeepWalk, then, integrates different user features and predicts vacant data fields based on late fusion approach and cosine similarity computation. We then explore and evaluate the application of our proposed method in a user identity mapping task. The results proved that our framework can successfully catch the dynamic user data and enhance the performance of identity linkage models by supplementing and updating data sources advance with the times." @default.
- W2896694928 created "2018-10-26" @default.
- W2896694928 creator A5005977022 @default.
- W2896694928 creator A5024206808 @default.
- W2896694928 creator A5038521974 @default.
- W2896694928 creator A5047770079 @default.
- W2896694928 creator A5073216396 @default.
- W2896694928 date "2018-07-01" @default.
- W2896694928 modified "2023-09-23" @default.
- W2896694928 title "Catching Dynamic Heterogeneous User Data for Identity Linkage Learning" @default.
- W2896694928 cites W1963930499 @default.
- W2896694928 cites W1980680715 @default.
- W2896694928 cites W1999531283 @default.
- W2896694928 cites W2004234600 @default.
- W2896694928 cites W2023633440 @default.
- W2896694928 cites W2024082504 @default.
- W2896694928 cites W2050544466 @default.
- W2896694928 cites W2058036501 @default.
- W2896694928 cites W2148143831 @default.
- W2896694928 cites W2598689838 @default.
- W2896694928 cites W2744898128 @default.
- W2896694928 cites W3104097132 @default.
- W2896694928 cites W4298082496 @default.
- W2896694928 doi "https://doi.org/10.1109/ijcnn.2018.8489332" @default.
- W2896694928 hasPublicationYear "2018" @default.
- W2896694928 type Work @default.
- W2896694928 sameAs 2896694928 @default.
- W2896694928 citedByCount "0" @default.
- W2896694928 crossrefType "proceedings-article" @default.
- W2896694928 hasAuthorship W2896694928A5005977022 @default.
- W2896694928 hasAuthorship W2896694928A5024206808 @default.
- W2896694928 hasAuthorship W2896694928A5038521974 @default.
- W2896694928 hasAuthorship W2896694928A5047770079 @default.
- W2896694928 hasAuthorship W2896694928A5073216396 @default.
- W2896694928 hasConcept C104317684 @default.
- W2896694928 hasConcept C107457646 @default.
- W2896694928 hasConcept C121332964 @default.
- W2896694928 hasConcept C185592680 @default.
- W2896694928 hasConcept C24890656 @default.
- W2896694928 hasConcept C2778355321 @default.
- W2896694928 hasConcept C31266012 @default.
- W2896694928 hasConcept C41008148 @default.
- W2896694928 hasConcept C55493867 @default.
- W2896694928 hasConceptScore W2896694928C104317684 @default.
- W2896694928 hasConceptScore W2896694928C107457646 @default.
- W2896694928 hasConceptScore W2896694928C121332964 @default.
- W2896694928 hasConceptScore W2896694928C185592680 @default.
- W2896694928 hasConceptScore W2896694928C24890656 @default.
- W2896694928 hasConceptScore W2896694928C2778355321 @default.
- W2896694928 hasConceptScore W2896694928C31266012 @default.
- W2896694928 hasConceptScore W2896694928C41008148 @default.
- W2896694928 hasConceptScore W2896694928C55493867 @default.
- W2896694928 hasLocation W28966949281 @default.
- W2896694928 hasOpenAccess W2896694928 @default.
- W2896694928 hasPrimaryLocation W28966949281 @default.
- W2896694928 hasRelatedWork W110311947 @default.
- W2896694928 hasRelatedWork W1536570095 @default.
- W2896694928 hasRelatedWork W2007495486 @default.
- W2896694928 hasRelatedWork W2076610045 @default.
- W2896694928 hasRelatedWork W3005892291 @default.
- W2896694928 hasRelatedWork W4240581861 @default.
- W2896694928 hasRelatedWork W4246426965 @default.
- W2896694928 hasRelatedWork W68053931 @default.
- W2896694928 hasRelatedWork W2505387022 @default.
- W2896694928 hasRelatedWork W3106945349 @default.
- W2896694928 isParatext "false" @default.
- W2896694928 isRetracted "false" @default.
- W2896694928 magId "2896694928" @default.
- W2896694928 workType "article" @default.