Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896719586> ?p ?o ?g. }
- W2896719586 endingPage "208" @default.
- W2896719586 startingPage "200" @default.
- W2896719586 abstract "A long-standing question in nutrition and obesity research involves quantifying the relationship between body fat and anthropometry. To date, the mathematical formulation of these relationships has relied on pairing easily obtained anthropometric measurements such as the body mass index (BMI), waist circumference, or hip circumference to body fat. Recent advances in 3D body shape imaging technology provides a new opportunity for quickly and accurately obtaining hundreds of anthropometric measurements within seconds, however, there does not yet exist a large diverse database that pairs these measurements to body fat. Herein, we leverage 3D scanned anthropometry obtained from a population of United States Army basic training recruits to derive four subpopulations of homogenous body shape archetypes using a combined principal components and cluster analysis. While the Army database was large and diverse, it did not have body composition measurements. Therefore, these body shape archetypes were paired to an alternate smaller sample of participants from the Pennington Biomedical Research Center in Baton Rouge, LA that were not only similarly imaged by the same 3D scanning machine, but also had concomitant measures of body composition by dual-energy X-ray absorptiometry body composition. With this enhanced ability to obtain anthropometry through 3D scanning quickly of large populations, our machine learning approach for pairing body shapes from large datasets to smaller datasets that also contain state-of-the-art body composition measurements can be extended to pair other health outcomes to 3D body shape anthropometry." @default.
- W2896719586 created "2018-10-26" @default.
- W2896719586 creator A5005126546 @default.
- W2896719586 creator A5009082465 @default.
- W2896719586 creator A5026053325 @default.
- W2896719586 creator A5041871181 @default.
- W2896719586 creator A5042271987 @default.
- W2896719586 creator A5079777175 @default.
- W2896719586 creator A5083861125 @default.
- W2896719586 date "2018-10-12" @default.
- W2896719586 modified "2023-10-13" @default.
- W2896719586 title "A machine learning approach relating 3D body scans to body composition in humans" @default.
- W2896719586 cites W1418475881 @default.
- W2896719586 cites W1494667642 @default.
- W2896719586 cites W1929626127 @default.
- W2896719586 cites W1975989482 @default.
- W2896719586 cites W2005553952 @default.
- W2896719586 cites W2042827441 @default.
- W2896719586 cites W2060810100 @default.
- W2896719586 cites W2100057728 @default.
- W2896719586 cites W2128679772 @default.
- W2896719586 cites W2140884198 @default.
- W2896719586 cites W2168228638 @default.
- W2896719586 cites W2262350559 @default.
- W2896719586 cites W2404420055 @default.
- W2896719586 cites W2507010172 @default.
- W2896719586 cites W2514658303 @default.
- W2896719586 cites W2587437607 @default.
- W2896719586 cites W2753053259 @default.
- W2896719586 cites W2789722850 @default.
- W2896719586 cites W2800175386 @default.
- W2896719586 doi "https://doi.org/10.1038/s41430-018-0337-1" @default.
- W2896719586 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8108117" @default.
- W2896719586 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30315314" @default.
- W2896719586 hasPublicationYear "2018" @default.
- W2896719586 type Work @default.
- W2896719586 sameAs 2896719586 @default.
- W2896719586 citedByCount "19" @default.
- W2896719586 countsByYear W28967195862019 @default.
- W2896719586 countsByYear W28967195862020 @default.
- W2896719586 countsByYear W28967195862021 @default.
- W2896719586 countsByYear W28967195862022 @default.
- W2896719586 countsByYear W28967195862023 @default.
- W2896719586 crossrefType "journal-article" @default.
- W2896719586 hasAuthorship W2896719586A5005126546 @default.
- W2896719586 hasAuthorship W2896719586A5009082465 @default.
- W2896719586 hasAuthorship W2896719586A5026053325 @default.
- W2896719586 hasAuthorship W2896719586A5041871181 @default.
- W2896719586 hasAuthorship W2896719586A5042271987 @default.
- W2896719586 hasAuthorship W2896719586A5079777175 @default.
- W2896719586 hasAuthorship W2896719586A5083861125 @default.
- W2896719586 hasBestOaLocation W28967195862 @default.
- W2896719586 hasConcept C111214947 @default.
- W2896719586 hasConcept C126322002 @default.
- W2896719586 hasConcept C142724271 @default.
- W2896719586 hasConcept C154945302 @default.
- W2896719586 hasConcept C162151065 @default.
- W2896719586 hasConcept C166504685 @default.
- W2896719586 hasConcept C2524010 @default.
- W2896719586 hasConcept C2776193436 @default.
- W2896719586 hasConcept C2780005051 @default.
- W2896719586 hasConcept C2780221984 @default.
- W2896719586 hasConcept C2908647359 @default.
- W2896719586 hasConcept C2993503589 @default.
- W2896719586 hasConcept C33923547 @default.
- W2896719586 hasConcept C41008148 @default.
- W2896719586 hasConcept C60627051 @default.
- W2896719586 hasConcept C61427482 @default.
- W2896719586 hasConcept C71924100 @default.
- W2896719586 hasConcept C99454951 @default.
- W2896719586 hasConceptScore W2896719586C111214947 @default.
- W2896719586 hasConceptScore W2896719586C126322002 @default.
- W2896719586 hasConceptScore W2896719586C142724271 @default.
- W2896719586 hasConceptScore W2896719586C154945302 @default.
- W2896719586 hasConceptScore W2896719586C162151065 @default.
- W2896719586 hasConceptScore W2896719586C166504685 @default.
- W2896719586 hasConceptScore W2896719586C2524010 @default.
- W2896719586 hasConceptScore W2896719586C2776193436 @default.
- W2896719586 hasConceptScore W2896719586C2780005051 @default.
- W2896719586 hasConceptScore W2896719586C2780221984 @default.
- W2896719586 hasConceptScore W2896719586C2908647359 @default.
- W2896719586 hasConceptScore W2896719586C2993503589 @default.
- W2896719586 hasConceptScore W2896719586C33923547 @default.
- W2896719586 hasConceptScore W2896719586C41008148 @default.
- W2896719586 hasConceptScore W2896719586C60627051 @default.
- W2896719586 hasConceptScore W2896719586C61427482 @default.
- W2896719586 hasConceptScore W2896719586C71924100 @default.
- W2896719586 hasConceptScore W2896719586C99454951 @default.
- W2896719586 hasIssue "2" @default.
- W2896719586 hasLocation W28967195861 @default.
- W2896719586 hasLocation W28967195862 @default.
- W2896719586 hasOpenAccess W2896719586 @default.
- W2896719586 hasPrimaryLocation W28967195861 @default.
- W2896719586 hasRelatedWork W1945985757 @default.
- W2896719586 hasRelatedWork W2011197530 @default.
- W2896719586 hasRelatedWork W2029643120 @default.
- W2896719586 hasRelatedWork W2049613374 @default.
- W2896719586 hasRelatedWork W2168789854 @default.