Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896720583> ?p ?o ?g. }
- W2896720583 endingPage "270" @default.
- W2896720583 startingPage "259" @default.
- W2896720583 abstract "Water spectral indices can enhance the difference between water bodies and background features. Thus, they have been widely used to extract and map surface water bodies based on multispectral satellite imagery. The urban scene is very heterogeneous since the surface is composed of a vast diversity of man-made objects, often of mixed distribution. Urban surface water mapping faces an extreme overestimation phenomenon because certain types of objects such as shadow, dark roads and some artificial features may return similar values to water bodies after an index computation. This study proposes a noise-prediction strategy to eliminate such misclassified nonwater areas in an automated way. Constrained energy minimization (CEM), a typical sparse target detection algorithm that does not need any background information, is utilized to draw the possible distribution of noise based on prior noise samples. The initial noise samples are automatically extracted by calculating the difference between two water indices widely accepted in urban scenes, namely, the modified normalized difference water index (MNDWI) and the automated water extraction index (AWEI). Recently freely available Sentinel-2 multispectral satellite imagery, with high spatial resolution (up to 10 m) and high repeated global coverage (every 5 days), was adopted, considering its potential on urban land cover mapping. Compared with the AWEI based approach, the results show that the proposed noise-prediction approach obtained an improved overall accuracy (increased Kappa coefficient by 0.07 on average), dramatically enhanced user accuracy (by 12.47% on average) with reduced noise, and simultaneously slightly decreased producer accuracy (by −1.19% on average). That is, the proposed method possesses an improvement of the misclassification of nonwater bodies to water bodies and a suppression of the missing of water body extraction at the same time. Finally, the comparative results, with the varying water index segmentation thresholds (−0.2 to 0.3) and an automatic Otsu threshold, indicate the robustness to the threshold of the proposed approach." @default.
- W2896720583 created "2018-10-26" @default.
- W2896720583 creator A5026452327 @default.
- W2896720583 creator A5039325190 @default.
- W2896720583 creator A5067123835 @default.
- W2896720583 creator A5067556699 @default.
- W2896720583 date "2018-12-01" @default.
- W2896720583 modified "2023-10-16" @default.
- W2896720583 title "Urban surface water body detection with suppressed built-up noise based on water indices from Sentinel-2 MSI imagery" @default.
- W2896720583 cites W1503479455 @default.
- W2896720583 cites W1509786997 @default.
- W2896720583 cites W1977325095 @default.
- W2896720583 cites W1979115496 @default.
- W2896720583 cites W1983813906 @default.
- W2896720583 cites W1995581599 @default.
- W2896720583 cites W2006658341 @default.
- W2896720583 cites W2018349799 @default.
- W2896720583 cites W2020795785 @default.
- W2896720583 cites W2046369678 @default.
- W2896720583 cites W2056435747 @default.
- W2896720583 cites W2066149844 @default.
- W2896720583 cites W2077509829 @default.
- W2896720583 cites W2078877578 @default.
- W2896720583 cites W2080455819 @default.
- W2896720583 cites W2081153373 @default.
- W2896720583 cites W2089182890 @default.
- W2896720583 cites W2090568582 @default.
- W2896720583 cites W2101678239 @default.
- W2896720583 cites W2103421886 @default.
- W2896720583 cites W2118246710 @default.
- W2896720583 cites W2118332032 @default.
- W2896720583 cites W2130770141 @default.
- W2896720583 cites W2140219630 @default.
- W2896720583 cites W2154985549 @default.
- W2896720583 cites W2172984470 @default.
- W2896720583 cites W2179843978 @default.
- W2896720583 cites W2192883182 @default.
- W2896720583 cites W2237190528 @default.
- W2896720583 cites W2283532050 @default.
- W2896720583 cites W2327914372 @default.
- W2896720583 cites W2330003762 @default.
- W2896720583 cites W2336807904 @default.
- W2896720583 cites W2461467590 @default.
- W2896720583 cites W2465076769 @default.
- W2896720583 cites W2470208725 @default.
- W2896720583 cites W2560167313 @default.
- W2896720583 cites W2571658044 @default.
- W2896720583 cites W2593194839 @default.
- W2896720583 cites W2623913549 @default.
- W2896720583 cites W2725897987 @default.
- W2896720583 doi "https://doi.org/10.1016/j.rse.2018.09.016" @default.
- W2896720583 hasPublicationYear "2018" @default.
- W2896720583 type Work @default.
- W2896720583 sameAs 2896720583 @default.
- W2896720583 citedByCount "101" @default.
- W2896720583 countsByYear W28967205832019 @default.
- W2896720583 countsByYear W28967205832020 @default.
- W2896720583 countsByYear W28967205832021 @default.
- W2896720583 countsByYear W28967205832022 @default.
- W2896720583 countsByYear W28967205832023 @default.
- W2896720583 crossrefType "journal-article" @default.
- W2896720583 hasAuthorship W2896720583A5026452327 @default.
- W2896720583 hasAuthorship W2896720583A5039325190 @default.
- W2896720583 hasAuthorship W2896720583A5067123835 @default.
- W2896720583 hasAuthorship W2896720583A5067556699 @default.
- W2896720583 hasBestOaLocation W28967205831 @default.
- W2896720583 hasConcept C100675267 @default.
- W2896720583 hasConcept C115961682 @default.
- W2896720583 hasConcept C117797892 @default.
- W2896720583 hasConcept C127313418 @default.
- W2896720583 hasConcept C127413603 @default.
- W2896720583 hasConcept C146978453 @default.
- W2896720583 hasConcept C154945302 @default.
- W2896720583 hasConcept C15744967 @default.
- W2896720583 hasConcept C173163844 @default.
- W2896720583 hasConcept C19269812 @default.
- W2896720583 hasConcept C2778102629 @default.
- W2896720583 hasConcept C39432304 @default.
- W2896720583 hasConcept C41008148 @default.
- W2896720583 hasConcept C542102704 @default.
- W2896720583 hasConcept C62649853 @default.
- W2896720583 hasConcept C76155785 @default.
- W2896720583 hasConcept C99498987 @default.
- W2896720583 hasConceptScore W2896720583C100675267 @default.
- W2896720583 hasConceptScore W2896720583C115961682 @default.
- W2896720583 hasConceptScore W2896720583C117797892 @default.
- W2896720583 hasConceptScore W2896720583C127313418 @default.
- W2896720583 hasConceptScore W2896720583C127413603 @default.
- W2896720583 hasConceptScore W2896720583C146978453 @default.
- W2896720583 hasConceptScore W2896720583C154945302 @default.
- W2896720583 hasConceptScore W2896720583C15744967 @default.
- W2896720583 hasConceptScore W2896720583C173163844 @default.
- W2896720583 hasConceptScore W2896720583C19269812 @default.
- W2896720583 hasConceptScore W2896720583C2778102629 @default.
- W2896720583 hasConceptScore W2896720583C39432304 @default.
- W2896720583 hasConceptScore W2896720583C41008148 @default.
- W2896720583 hasConceptScore W2896720583C542102704 @default.
- W2896720583 hasConceptScore W2896720583C62649853 @default.