Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896722898> ?p ?o ?g. }
- W2896722898 endingPage "s309" @default.
- W2896722898 startingPage "s295" @default.
- W2896722898 abstract "Ruminant-based food production faces currently multiple challenges such as environmental emissions, climate change and accelerating food–feed–fuel competition for arable land. Therefore, more sustainable feed production is needed together with the exploitation of novel resources. In addition to numerous food industry (milling, sugar, starch, alcohol or plant oil) side streams already in use, new ones such as vegetable and fruit residues are explored, but their conservation is challenging and production often seasonal. In the temperate zones, lipid-rich camelina (Camelina sativa) expeller as an example of oilseed by-products has potential to enrich ruminant milk and meat fat with bioactive trans-11 18:1 and cis-9,trans-11 18:2 fatty acids and mitigate methane emissions. Regardless of the lower methionine content of alternative grain legume protein relative to soya bean meal (Glycine max), the lactation performance or the growth of ruminants fed faba beans (Vicia faba), peas (Pisum sativum) and lupins (Lupinus sp.) are comparable. Wood is the most abundant carbohydrate worldwide, but agroforestry approaches in ruminant nutrition are not common in the temperate areas. Untreated wood is poorly utilised by ruminants because of linkages between cellulose and lignin, but the utilisability can be improved by various processing methods. In the tropics, the leaves of fodder trees and shrubs (e.g. cassava (Manihot esculenta), Leucaena sp., Flemingia sp.) are good protein supplements for ruminants. A food–feed production system integrates the leaves and the by-products of on-farm food production to grass production in ruminant feeding. It can improve animal performance sustainably at smallholder farms. For larger-scale animal production, detoxified jatropha (Jatropha sp.) meal is a noteworthy alternative protein source. Globally, the advantages of single-cell protein (bacteria, yeast, fungi, microalgae) and aquatic biomass (seaweed, duckweed) over land crops are the independence of production from arable land and weather. The chemical composition of these feeds varies widely depending on the species and growth conditions. Microalgae have shown good potential both as lipid (e.g. Schizochytrium sp.) and protein supplements (e.g. Spirulina platensis) for ruminants. To conclude, various novel or underexploited feeds have potential to replace or supplement the traditional crops in ruminant rations. In the short-term, N-fixing grain legumes, oilseeds such as camelina and increased use of food and/or fuel industry by-products have the greatest potential to replace or supplement the traditional crops especially in the temperate zones. In the long-term, microalgae and duckweed of high-yield potential as well as wood industry by-products may become economically competitive feed options worldwide." @default.
- W2896722898 created "2018-10-26" @default.
- W2896722898 creator A5018714668 @default.
- W2896722898 creator A5029266332 @default.
- W2896722898 creator A5051783303 @default.
- W2896722898 creator A5060632437 @default.
- W2896722898 creator A5065854748 @default.
- W2896722898 creator A5068610589 @default.
- W2896722898 creator A5080048219 @default.
- W2896722898 date "2018-01-01" @default.
- W2896722898 modified "2023-10-16" @default.
- W2896722898 title "Review: Alternative and novel feeds for ruminants: nutritive value, product quality and environmental aspects" @default.
- W2896722898 cites W1032442904 @default.
- W2896722898 cites W115330641 @default.
- W2896722898 cites W1490594981 @default.
- W2896722898 cites W1607840666 @default.
- W2896722898 cites W1728827690 @default.
- W2896722898 cites W1730252720 @default.
- W2896722898 cites W1754457970 @default.
- W2896722898 cites W1778745278 @default.
- W2896722898 cites W1987196223 @default.
- W2896722898 cites W1989470281 @default.
- W2896722898 cites W1990182939 @default.
- W2896722898 cites W1992504487 @default.
- W2896722898 cites W1995574291 @default.
- W2896722898 cites W1995633187 @default.
- W2896722898 cites W1996280718 @default.
- W2896722898 cites W1999880982 @default.
- W2896722898 cites W2014993901 @default.
- W2896722898 cites W2015527152 @default.
- W2896722898 cites W2017694751 @default.
- W2896722898 cites W2027319952 @default.
- W2896722898 cites W2039764894 @default.
- W2896722898 cites W2061609167 @default.
- W2896722898 cites W206465802 @default.
- W2896722898 cites W2070997839 @default.
- W2896722898 cites W2074532262 @default.
- W2896722898 cites W2088214053 @default.
- W2896722898 cites W2093972643 @default.
- W2896722898 cites W2096257549 @default.
- W2896722898 cites W2115980632 @default.
- W2896722898 cites W2118050673 @default.
- W2896722898 cites W2121679945 @default.
- W2896722898 cites W2135947426 @default.
- W2896722898 cites W2151966504 @default.
- W2896722898 cites W2154569430 @default.
- W2896722898 cites W2159992440 @default.
- W2896722898 cites W2161416114 @default.
- W2896722898 cites W2164414350 @default.
- W2896722898 cites W2164605450 @default.
- W2896722898 cites W2202208613 @default.
- W2896722898 cites W2233654992 @default.
- W2896722898 cites W2239590010 @default.
- W2896722898 cites W2239981813 @default.
- W2896722898 cites W2273917853 @default.
- W2896722898 cites W2306730032 @default.
- W2896722898 cites W2323598558 @default.
- W2896722898 cites W2339899093 @default.
- W2896722898 cites W2404708523 @default.
- W2896722898 cites W2467360758 @default.
- W2896722898 cites W2509858025 @default.
- W2896722898 cites W2515485802 @default.
- W2896722898 cites W2528728318 @default.
- W2896722898 cites W2555962883 @default.
- W2896722898 cites W2568659121 @default.
- W2896722898 cites W2581474960 @default.
- W2896722898 cites W2599082803 @default.
- W2896722898 cites W260494487 @default.
- W2896722898 cites W2610917012 @default.
- W2896722898 cites W2623106772 @default.
- W2896722898 cites W2744417958 @default.
- W2896722898 cites W2761135726 @default.
- W2896722898 cites W2767107917 @default.
- W2896722898 cites W3155846666 @default.
- W2896722898 cites W59542597 @default.
- W2896722898 doi "https://doi.org/10.1017/s1751731118002252" @default.
- W2896722898 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30318027" @default.
- W2896722898 hasPublicationYear "2018" @default.
- W2896722898 type Work @default.
- W2896722898 sameAs 2896722898 @default.
- W2896722898 citedByCount "112" @default.
- W2896722898 countsByYear W28967228982018 @default.
- W2896722898 countsByYear W28967228982019 @default.
- W2896722898 countsByYear W28967228982020 @default.
- W2896722898 countsByYear W28967228982021 @default.
- W2896722898 countsByYear W28967228982022 @default.
- W2896722898 countsByYear W28967228982023 @default.
- W2896722898 crossrefType "journal-article" @default.
- W2896722898 hasAuthorship W2896722898A5018714668 @default.
- W2896722898 hasAuthorship W2896722898A5029266332 @default.
- W2896722898 hasAuthorship W2896722898A5051783303 @default.
- W2896722898 hasAuthorship W2896722898A5060632437 @default.
- W2896722898 hasAuthorship W2896722898A5065854748 @default.
- W2896722898 hasAuthorship W2896722898A5068610589 @default.
- W2896722898 hasAuthorship W2896722898A5080048219 @default.
- W2896722898 hasBestOaLocation W28967228981 @default.
- W2896722898 hasConcept C137580998 @default.
- W2896722898 hasConcept C2776083151 @default.