Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896723630> ?p ?o ?g. }
- W2896723630 abstract "Short term load prediction plays a critical role in the planning and operations of electric power systems especially in the modern days with high emphasis on integration of renewable energy resources. In this work, a hybrid deep learning model for short term load forecasting (STLF) is presented. The proposed method first decomposes the time series data into several intrinsic mode functions (IMF) using Empirical Mode Decomposition (EMD) and a reconstruction of the original series is obtained by suppressing the irrelevant IMFs. Detrended fluctuation analysis (DFA) is applied to each IMF to determine their scaling exponents for robust denoising performance. The denoised data is then used as input to the Deep Belief Network (DBN) model for modeling and prediction. Real data which represents hourly load consumption from the Electric Reliability Council of Texas (ERCOT) was used to evaluate the efficacy of the proposed method." @default.
- W2896723630 created "2018-10-26" @default.
- W2896723630 creator A5002451632 @default.
- W2896723630 creator A5054416654 @default.
- W2896723630 creator A5056398494 @default.
- W2896723630 creator A5074045437 @default.
- W2896723630 date "2018-04-01" @default.
- W2896723630 modified "2023-09-26" @default.
- W2896723630 title "Short-Term Load Forecasting Based on a Hybrid Deep Learning Model" @default.
- W2896723630 cites W1531550467 @default.
- W2896723630 cites W1544481489 @default.
- W2896723630 cites W1586335931 @default.
- W2896723630 cites W2007221293 @default.
- W2896723630 cites W2013046778 @default.
- W2896723630 cites W2017821362 @default.
- W2896723630 cites W2022353411 @default.
- W2896723630 cites W2023573767 @default.
- W2896723630 cites W2033904036 @default.
- W2896723630 cites W2043070647 @default.
- W2896723630 cites W2059711001 @default.
- W2896723630 cites W2083022762 @default.
- W2896723630 cites W2084678032 @default.
- W2896723630 cites W2100495367 @default.
- W2896723630 cites W2114623428 @default.
- W2896723630 cites W2130325614 @default.
- W2896723630 cites W2136723283 @default.
- W2896723630 cites W2136922672 @default.
- W2896723630 cites W2490223215 @default.
- W2896723630 cites W2528071769 @default.
- W2896723630 cites W2562403923 @default.
- W2896723630 cites W2586634262 @default.
- W2896723630 cites W2597560131 @default.
- W2896723630 cites W2612456349 @default.
- W2896723630 cites W2620422220 @default.
- W2896723630 cites W2760504855 @default.
- W2896723630 cites W2793890360 @default.
- W2896723630 cites W2951044827 @default.
- W2896723630 doi "https://doi.org/10.1109/secon.2018.8479119" @default.
- W2896723630 hasPublicationYear "2018" @default.
- W2896723630 type Work @default.
- W2896723630 sameAs 2896723630 @default.
- W2896723630 citedByCount "4" @default.
- W2896723630 countsByYear W28967236302018 @default.
- W2896723630 countsByYear W28967236302020 @default.
- W2896723630 countsByYear W28967236302021 @default.
- W2896723630 countsByYear W28967236302023 @default.
- W2896723630 crossrefType "proceedings-article" @default.
- W2896723630 hasAuthorship W2896723630A5002451632 @default.
- W2896723630 hasAuthorship W2896723630A5054416654 @default.
- W2896723630 hasAuthorship W2896723630A5056398494 @default.
- W2896723630 hasAuthorship W2896723630A5074045437 @default.
- W2896723630 hasConcept C106131492 @default.
- W2896723630 hasConcept C108583219 @default.
- W2896723630 hasConcept C111919701 @default.
- W2896723630 hasConcept C119857082 @default.
- W2896723630 hasConcept C121332964 @default.
- W2896723630 hasConcept C124101348 @default.
- W2896723630 hasConcept C151406439 @default.
- W2896723630 hasConcept C154945302 @default.
- W2896723630 hasConcept C163258240 @default.
- W2896723630 hasConcept C25570617 @default.
- W2896723630 hasConcept C31972630 @default.
- W2896723630 hasConcept C41008148 @default.
- W2896723630 hasConcept C43214815 @default.
- W2896723630 hasConcept C48677424 @default.
- W2896723630 hasConcept C61797465 @default.
- W2896723630 hasConcept C62520636 @default.
- W2896723630 hasConcept C77715397 @default.
- W2896723630 hasConcept C89227174 @default.
- W2896723630 hasConcept C97385483 @default.
- W2896723630 hasConceptScore W2896723630C106131492 @default.
- W2896723630 hasConceptScore W2896723630C108583219 @default.
- W2896723630 hasConceptScore W2896723630C111919701 @default.
- W2896723630 hasConceptScore W2896723630C119857082 @default.
- W2896723630 hasConceptScore W2896723630C121332964 @default.
- W2896723630 hasConceptScore W2896723630C124101348 @default.
- W2896723630 hasConceptScore W2896723630C151406439 @default.
- W2896723630 hasConceptScore W2896723630C154945302 @default.
- W2896723630 hasConceptScore W2896723630C163258240 @default.
- W2896723630 hasConceptScore W2896723630C25570617 @default.
- W2896723630 hasConceptScore W2896723630C31972630 @default.
- W2896723630 hasConceptScore W2896723630C41008148 @default.
- W2896723630 hasConceptScore W2896723630C43214815 @default.
- W2896723630 hasConceptScore W2896723630C48677424 @default.
- W2896723630 hasConceptScore W2896723630C61797465 @default.
- W2896723630 hasConceptScore W2896723630C62520636 @default.
- W2896723630 hasConceptScore W2896723630C77715397 @default.
- W2896723630 hasConceptScore W2896723630C89227174 @default.
- W2896723630 hasConceptScore W2896723630C97385483 @default.
- W2896723630 hasLocation W28967236301 @default.
- W2896723630 hasOpenAccess W2896723630 @default.
- W2896723630 hasPrimaryLocation W28967236301 @default.
- W2896723630 hasRelatedWork W1501213224 @default.
- W2896723630 hasRelatedWork W2126887587 @default.
- W2896723630 hasRelatedWork W2795261237 @default.
- W2896723630 hasRelatedWork W3082895349 @default.
- W2896723630 hasRelatedWork W3123344745 @default.
- W2896723630 hasRelatedWork W4210841218 @default.
- W2896723630 hasRelatedWork W4223943233 @default.
- W2896723630 hasRelatedWork W4302303815 @default.