Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896725104> ?p ?o ?g. }
- W2896725104 endingPage "1535" @default.
- W2896725104 startingPage "1527" @default.
- W2896725104 abstract "Abstract Motivation Prediction of cancer patient’s response to therapeutic agent is important for personalized treatment. Because experimental verification of reactions between large cohort of patients and drugs is time-intensive, expensive and impractical, preclinical prediction model based on large-scale pharmacogenomic of cancer cell line is highly expected. However, most of the existing computational studies are primarily based on genomic profiles of cancer cell lines while ignoring relationships among genes and failing to capture functional similarity of cell lines. Results In this study, we present a novel approach named NRL2DRP, which integrates protein–protein interactions and captures similarity of cell lines’ functional contexts, to predict drug responses. Through integrating genomic aberrations and drug responses information with protein–protein interactions, we construct a large response-related network, where the neighborhood structure of cell line provides a functional context to its therapeutic responses. Representation vectors of cell lines are extracted through network representation learning method, which could preserve vertices’ neighborhood similarity and serve as features to build predictor for drug responses. The predictive performance of NRL2DRP is verified by cross-validation on GDSC dataset and methods comparison, where NRL2DRP achieves AUC > 79% for half drugs and outperforms previous methods. The validity of NRL2DRP is also supported by its effectiveness on uncovering accurate novel relationships between cell lines and drugs. Lots of newly predicted drug responses are confirmed by reported experimental evidences. Availability and implementation The code and documentation are available on https://github.com/USTC-HIlab/NRL2DRP. Supplementary information Supplementary data are available at Bioinformatics online." @default.
- W2896725104 created "2018-10-26" @default.
- W2896725104 creator A5026475770 @default.
- W2896725104 creator A5036647389 @default.
- W2896725104 creator A5089731650 @default.
- W2896725104 creator A5090261022 @default.
- W2896725104 creator A5091103434 @default.
- W2896725104 date "2018-10-10" @default.
- W2896725104 modified "2023-10-18" @default.
- W2896725104 title "A novel approach for drug response prediction in cancer cell lines via network representation learning" @default.
- W2896725104 cites W1865660143 @default.
- W2896725104 cites W1966684685 @default.
- W2896725104 cites W1966716734 @default.
- W2896725104 cites W1995240259 @default.
- W2896725104 cites W2009313526 @default.
- W2896725104 cites W2014673454 @default.
- W2896725104 cites W2041652340 @default.
- W2896725104 cites W2043398720 @default.
- W2896725104 cites W2044858733 @default.
- W2896725104 cites W2108068107 @default.
- W2896725104 cites W2108933868 @default.
- W2896725104 cites W2110071511 @default.
- W2896725104 cites W2114819889 @default.
- W2896725104 cites W2117513900 @default.
- W2896725104 cites W2121604817 @default.
- W2896725104 cites W2122128696 @default.
- W2896725104 cites W2124254102 @default.
- W2896725104 cites W2124479345 @default.
- W2896725104 cites W2140494950 @default.
- W2896725104 cites W2144641994 @default.
- W2896725104 cites W2146925231 @default.
- W2896725104 cites W2153635508 @default.
- W2896725104 cites W2197241765 @default.
- W2896725104 cites W2281212369 @default.
- W2896725104 cites W2302336482 @default.
- W2896725104 cites W2339186630 @default.
- W2896725104 cites W2343596022 @default.
- W2896725104 cites W2432718434 @default.
- W2896725104 cites W2461427403 @default.
- W2896725104 cites W2470654142 @default.
- W2896725104 cites W2569335714 @default.
- W2896725104 cites W2588262534 @default.
- W2896725104 cites W2737623232 @default.
- W2896725104 cites W2747309147 @default.
- W2896725104 cites W3105705953 @default.
- W2896725104 cites W901049929 @default.
- W2896725104 doi "https://doi.org/10.1093/bioinformatics/bty848" @default.
- W2896725104 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30304378" @default.
- W2896725104 hasPublicationYear "2018" @default.
- W2896725104 type Work @default.
- W2896725104 sameAs 2896725104 @default.
- W2896725104 citedByCount "47" @default.
- W2896725104 countsByYear W28967251042019 @default.
- W2896725104 countsByYear W28967251042020 @default.
- W2896725104 countsByYear W28967251042021 @default.
- W2896725104 countsByYear W28967251042022 @default.
- W2896725104 countsByYear W28967251042023 @default.
- W2896725104 crossrefType "journal-article" @default.
- W2896725104 hasAuthorship W2896725104A5026475770 @default.
- W2896725104 hasAuthorship W2896725104A5036647389 @default.
- W2896725104 hasAuthorship W2896725104A5089731650 @default.
- W2896725104 hasAuthorship W2896725104A5090261022 @default.
- W2896725104 hasAuthorship W2896725104A5091103434 @default.
- W2896725104 hasConcept C103278499 @default.
- W2896725104 hasConcept C115961682 @default.
- W2896725104 hasConcept C119857082 @default.
- W2896725104 hasConcept C121608353 @default.
- W2896725104 hasConcept C126322002 @default.
- W2896725104 hasConcept C151730666 @default.
- W2896725104 hasConcept C154945302 @default.
- W2896725104 hasConcept C170734499 @default.
- W2896725104 hasConcept C17744445 @default.
- W2896725104 hasConcept C199539241 @default.
- W2896725104 hasConcept C2776359362 @default.
- W2896725104 hasConcept C2779343474 @default.
- W2896725104 hasConcept C2780035454 @default.
- W2896725104 hasConcept C2994119904 @default.
- W2896725104 hasConcept C2994372470 @default.
- W2896725104 hasConcept C41008148 @default.
- W2896725104 hasConcept C60644358 @default.
- W2896725104 hasConcept C70721500 @default.
- W2896725104 hasConcept C71924100 @default.
- W2896725104 hasConcept C86803240 @default.
- W2896725104 hasConcept C94625758 @default.
- W2896725104 hasConcept C96232424 @default.
- W2896725104 hasConcept C98274493 @default.
- W2896725104 hasConceptScore W2896725104C103278499 @default.
- W2896725104 hasConceptScore W2896725104C115961682 @default.
- W2896725104 hasConceptScore W2896725104C119857082 @default.
- W2896725104 hasConceptScore W2896725104C121608353 @default.
- W2896725104 hasConceptScore W2896725104C126322002 @default.
- W2896725104 hasConceptScore W2896725104C151730666 @default.
- W2896725104 hasConceptScore W2896725104C154945302 @default.
- W2896725104 hasConceptScore W2896725104C170734499 @default.
- W2896725104 hasConceptScore W2896725104C17744445 @default.
- W2896725104 hasConceptScore W2896725104C199539241 @default.
- W2896725104 hasConceptScore W2896725104C2776359362 @default.
- W2896725104 hasConceptScore W2896725104C2779343474 @default.