Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896733991> ?p ?o ?g. }
- W2896733991 abstract "Abstract Independent component analysis (ICA) is a standard method for separating a multivariate signal into additive components that are non-Gaussian and independent from each other. This paper introduced a novel algorithm to perform ICA employing matrix exponentials, which performs similarly to geodesic based methods but based on a different insight. First, we showed that the ICA problem can be formulated as an optimization problem in the space of orthogonal matrices whose determinants are one, which can be further transformed into an equivalent problem in the space of antisymmetric matrices. Then, an efficient approach was presented for iteratively solving this problem using the antisymmetric matrices with one or more nonzero columns and rows. Especially, we proved that in the sense of local optimization it is sufficient to employ antisymmetric matrices with only one nonzero column and row. The analytical expressions of exponentials of such special antisymmetric matrices were also explicitly established in this paper. Compared to other competing algorithms, experimental results indicated that the proposed method can achieve separation with superior performance in term of the precision and running speed." @default.
- W2896733991 created "2018-10-26" @default.
- W2896733991 creator A5017168501 @default.
- W2896733991 date "2019-01-01" @default.
- W2896733991 modified "2023-10-18" @default.
- W2896733991 title "Independent component analysis employing exponentials of sparse antisymmetric matrices" @default.
- W2896733991 cites W1493357981 @default.
- W2896733991 cites W1493390473 @default.
- W2896733991 cites W1557925196 @default.
- W2896733991 cites W1574100544 @default.
- W2896733991 cites W1576427430 @default.
- W2896733991 cites W1638580935 @default.
- W2896733991 cites W1893333638 @default.
- W2896733991 cites W1923779967 @default.
- W2896733991 cites W1967455454 @default.
- W2896733991 cites W1970789124 @default.
- W2896733991 cites W1977067929 @default.
- W2896733991 cites W1982542997 @default.
- W2896733991 cites W1987055966 @default.
- W2896733991 cites W1990390158 @default.
- W2896733991 cites W1991840148 @default.
- W2896733991 cites W1996355918 @default.
- W2896733991 cites W1997379117 @default.
- W2896733991 cites W2003239136 @default.
- W2896733991 cites W2032388586 @default.
- W2896733991 cites W2040643815 @default.
- W2896733991 cites W2045512849 @default.
- W2896733991 cites W2053037153 @default.
- W2896733991 cites W2080063509 @default.
- W2896733991 cites W2082463306 @default.
- W2896733991 cites W2085477716 @default.
- W2896733991 cites W2091063949 @default.
- W2896733991 cites W2096789154 @default.
- W2896733991 cites W2097607403 @default.
- W2896733991 cites W2105909330 @default.
- W2896733991 cites W2106100072 @default.
- W2896733991 cites W2106565812 @default.
- W2896733991 cites W2108384452 @default.
- W2896733991 cites W2113032826 @default.
- W2896733991 cites W2120915669 @default.
- W2896733991 cites W2121614598 @default.
- W2896733991 cites W2126622293 @default.
- W2896733991 cites W2128967371 @default.
- W2896733991 cites W2137915322 @default.
- W2896733991 cites W2141224535 @default.
- W2896733991 cites W2142491617 @default.
- W2896733991 cites W2143132653 @default.
- W2896733991 cites W2147631863 @default.
- W2896733991 cites W2152161325 @default.
- W2896733991 cites W2155813218 @default.
- W2896733991 cites W2156529323 @default.
- W2896733991 cites W2157446241 @default.
- W2896733991 cites W2160034376 @default.
- W2896733991 cites W2160177263 @default.
- W2896733991 cites W2169736182 @default.
- W2896733991 cites W2190982124 @default.
- W2896733991 cites W2242513867 @default.
- W2896733991 cites W2294321532 @default.
- W2896733991 cites W2470404915 @default.
- W2896733991 cites W2472885885 @default.
- W2896733991 cites W2556131561 @default.
- W2896733991 cites W2578349181 @default.
- W2896733991 cites W2587870445 @default.
- W2896733991 cites W2593580638 @default.
- W2896733991 cites W2607633041 @default.
- W2896733991 cites W2744049245 @default.
- W2896733991 cites W2794329395 @default.
- W2896733991 cites W2964304793 @default.
- W2896733991 doi "https://doi.org/10.1016/j.neucom.2018.10.021" @default.
- W2896733991 hasPublicationYear "2019" @default.
- W2896733991 type Work @default.
- W2896733991 sameAs 2896733991 @default.
- W2896733991 citedByCount "2" @default.
- W2896733991 countsByYear W28967339912019 @default.
- W2896733991 crossrefType "journal-article" @default.
- W2896733991 hasAuthorship W2896733991A5017168501 @default.
- W2896733991 hasConcept C104140500 @default.
- W2896733991 hasConcept C106487976 @default.
- W2896733991 hasConcept C11413529 @default.
- W2896733991 hasConcept C121332964 @default.
- W2896733991 hasConcept C134306372 @default.
- W2896733991 hasConcept C135598885 @default.
- W2896733991 hasConcept C151376022 @default.
- W2896733991 hasConcept C152401794 @default.
- W2896733991 hasConcept C154945302 @default.
- W2896733991 hasConcept C159985019 @default.
- W2896733991 hasConcept C163716315 @default.
- W2896733991 hasConcept C165818556 @default.
- W2896733991 hasConcept C187064257 @default.
- W2896733991 hasConcept C192562407 @default.
- W2896733991 hasConcept C28826006 @default.
- W2896733991 hasConcept C33923547 @default.
- W2896733991 hasConcept C37914503 @default.
- W2896733991 hasConcept C41008148 @default.
- W2896733991 hasConcept C44292817 @default.
- W2896733991 hasConcept C51432778 @default.
- W2896733991 hasConcept C62520636 @default.
- W2896733991 hasConcept C77088390 @default.
- W2896733991 hasConceptScore W2896733991C104140500 @default.
- W2896733991 hasConceptScore W2896733991C106487976 @default.