Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896734887> ?p ?o ?g. }
- W2896734887 endingPage "238" @default.
- W2896734887 startingPage "222" @default.
- W2896734887 abstract "The high amount of information that users continually provides to the Internet is unorganized and difficult to interpret. Unluckily, there is no point in having high amounts of information that we cannot work with. Therefore, there is a need of methods that sort this information and stores it in a way that can be easily accessed and processed. In this paper, a novel method that uses sentiment analysis procedures in order to automatically create fuzzy ontologies from free texts provided by users in social networks is presented. Moreover, multi-granular fuzzy linguistic modelling methods are used in order to select the best representation mean to store the information in the fuzzy ontology. Thanks to the presented method, information is transformed and presented in an organized way making it possible to properly work with it." @default.
- W2896734887 created "2018-10-26" @default.
- W2896734887 creator A5001817720 @default.
- W2896734887 creator A5006194875 @default.
- W2896734887 creator A5046763062 @default.
- W2896734887 creator A5073973267 @default.
- W2896734887 creator A5076657750 @default.
- W2896734887 date "2019-02-01" @default.
- W2896734887 modified "2023-10-18" @default.
- W2896734887 title "An automatic procedure to create fuzzy ontologies from users’ opinions using sentiment analysis procedures and multi-granular fuzzy linguistic modelling methods" @default.
- W2896734887 cites W1264135555 @default.
- W2896734887 cites W1571313004 @default.
- W2896734887 cites W1673779392 @default.
- W2896734887 cites W1975078995 @default.
- W2896734887 cites W2000684638 @default.
- W2896734887 cites W2062913298 @default.
- W2896734887 cites W2094298620 @default.
- W2896734887 cites W2108856508 @default.
- W2896734887 cites W2113532413 @default.
- W2896734887 cites W2116522872 @default.
- W2896734887 cites W2157041604 @default.
- W2896734887 cites W2162848031 @default.
- W2896734887 cites W2165094119 @default.
- W2896734887 cites W2211110161 @default.
- W2896734887 cites W2272031392 @default.
- W2896734887 cites W2346604114 @default.
- W2896734887 cites W2472478905 @default.
- W2896734887 cites W2497177424 @default.
- W2896734887 cites W2536583325 @default.
- W2896734887 cites W2551211182 @default.
- W2896734887 cites W2580352794 @default.
- W2896734887 cites W2585078266 @default.
- W2896734887 cites W2586699166 @default.
- W2896734887 cites W2592803138 @default.
- W2896734887 cites W2605204113 @default.
- W2896734887 cites W2609291468 @default.
- W2896734887 cites W2700061730 @default.
- W2896734887 cites W2735734672 @default.
- W2896734887 cites W2751735250 @default.
- W2896734887 cites W2753157886 @default.
- W2896734887 cites W2753840835 @default.
- W2896734887 cites W2759308881 @default.
- W2896734887 cites W2764078585 @default.
- W2896734887 cites W2779374146 @default.
- W2896734887 cites W2790496953 @default.
- W2896734887 cites W2803197918 @default.
- W2896734887 cites W2887856105 @default.
- W2896734887 cites W4211007335 @default.
- W2896734887 cites W4240278385 @default.
- W2896734887 cites W4245152641 @default.
- W2896734887 doi "https://doi.org/10.1016/j.ins.2018.10.022" @default.
- W2896734887 hasPublicationYear "2019" @default.
- W2896734887 type Work @default.
- W2896734887 sameAs 2896734887 @default.
- W2896734887 citedByCount "76" @default.
- W2896734887 countsByYear W28967348872019 @default.
- W2896734887 countsByYear W28967348872020 @default.
- W2896734887 countsByYear W28967348872021 @default.
- W2896734887 countsByYear W28967348872022 @default.
- W2896734887 countsByYear W28967348872023 @default.
- W2896734887 crossrefType "journal-article" @default.
- W2896734887 hasAuthorship W2896734887A5001817720 @default.
- W2896734887 hasAuthorship W2896734887A5006194875 @default.
- W2896734887 hasAuthorship W2896734887A5046763062 @default.
- W2896734887 hasAuthorship W2896734887A5073973267 @default.
- W2896734887 hasAuthorship W2896734887A5076657750 @default.
- W2896734887 hasConcept C110875604 @default.
- W2896734887 hasConcept C111472728 @default.
- W2896734887 hasConcept C124101348 @default.
- W2896734887 hasConcept C136764020 @default.
- W2896734887 hasConcept C138885662 @default.
- W2896734887 hasConcept C154945302 @default.
- W2896734887 hasConcept C17744445 @default.
- W2896734887 hasConcept C199539241 @default.
- W2896734887 hasConcept C23123220 @default.
- W2896734887 hasConcept C2524010 @default.
- W2896734887 hasConcept C25810664 @default.
- W2896734887 hasConcept C2776359362 @default.
- W2896734887 hasConcept C28719098 @default.
- W2896734887 hasConcept C33923547 @default.
- W2896734887 hasConcept C41008148 @default.
- W2896734887 hasConcept C58166 @default.
- W2896734887 hasConcept C66402592 @default.
- W2896734887 hasConcept C88548561 @default.
- W2896734887 hasConcept C94625758 @default.
- W2896734887 hasConceptScore W2896734887C110875604 @default.
- W2896734887 hasConceptScore W2896734887C111472728 @default.
- W2896734887 hasConceptScore W2896734887C124101348 @default.
- W2896734887 hasConceptScore W2896734887C136764020 @default.
- W2896734887 hasConceptScore W2896734887C138885662 @default.
- W2896734887 hasConceptScore W2896734887C154945302 @default.
- W2896734887 hasConceptScore W2896734887C17744445 @default.
- W2896734887 hasConceptScore W2896734887C199539241 @default.
- W2896734887 hasConceptScore W2896734887C23123220 @default.
- W2896734887 hasConceptScore W2896734887C2524010 @default.
- W2896734887 hasConceptScore W2896734887C25810664 @default.
- W2896734887 hasConceptScore W2896734887C2776359362 @default.
- W2896734887 hasConceptScore W2896734887C28719098 @default.