Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896737786> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W2896737786 abstract "Abstract The formation of thin film coatings of polymers in glow discharge systems was recognized as early as the 19th century. However, they were considered as by-products of electrical discharges and hence little attention was paid. Only the period after 1950s saw their renaissance, as practical ways to make special coatings on metals. Since then, much research has been done in plasma induced polymers and interesting, as well as, industry relevant applications have been identified for polymers deposited using plasmas because of their flawless thin film structure, excellent adhesion to the substrate, chemical inertness and low dielectric constant. In this chapter the significance of Plasma Induced polymer coatings is presented with more emphasis on the process aspects, general methods of characterization of these polymers and application of such polymers in super hard coatings. In the first part, a clear distinction has been made between Plasma Polymerized and Plasma Induced Polymerized coatings based on the mechanism of the process. The processing parameters that greatly influence the properties of such coatings are considered. A definition for the rate of deposition based on these process parameters has been established. This section ends with the most commonly used monomer materials in plasma induced polymerization systems. Special case studies on Atmospheric pressure plasma Vs Low pressure plasma treatment of polymer surface and on the plasma treatment of Polydimethylsiloxane (PDMS) surfaces for bio applications are considered. Inorganic hard coatings are widely used in many industries and these are basically transition metal nitrides and carbides and their combination. Hardness of these compounds ranges form 20–40 GPa. The hardness and stiffness (elastic modulus) are completely governed by the nature of bonding, distance between the two atoms and etc., Hardness of the super hard coatings is above 40 GPa, and this hardness is achieved using nano size and composite effects methods and these coatings are widely used surface engineering industries. Polymer based coatings are also gaining momentum to replace some of the inorganic hard coatings. At present polymer coatings are having lower hardness compare with inorganic coatings and the hardness range of 1–3 GPa. The reason for lower hardness in the polymer coatings is predominant contribution from sp2 hybridization. To enhance the polymer coating hardness, the polymer should be rich in sp3 hybridization and incorporation of foreign materials into the polymer matrix which is having higher degree of covalent and ionic nature. Plasma enhanced metal organic chemical vapour deposition (MOCVD) and physical or chemical sputtering of solid metal target along with the plasma polymerization are the two strategies of obtaining the nano particle or nanocomposites embedded polymer films. These polymers can be utilized for many applications such as optical coatings, protective films, biomedical materials etc. Details of plasma techniques used to produce nano composites especially using microwave and RF plasmas are discussed here. We review the mechanical properties of existing polymer coatings and the science behind higher hardness and stiffness of different polymer coating materials and mechanical methods of polymer and failure methods polymer coatings will be discussed. It is interesting to see increase in hardness of monolithic polymer coating by incorporating new materials and enhancing the polymer network stiffness. The probable process methods to incorporate the foreign materials and network stiffening methods using plasma process will be discussed." @default.
- W2896737786 created "2018-10-26" @default.
- W2896737786 creator A5001407295 @default.
- W2896737786 creator A5002793729 @default.
- W2896737786 creator A5057404604 @default.
- W2896737786 creator A5087360138 @default.
- W2896737786 date "2019-01-01" @default.
- W2896737786 modified "2023-10-17" @default.
- W2896737786 title "Plasma-Induced Polymeric Coatings" @default.
- W2896737786 doi "https://doi.org/10.1016/b978-0-12-813152-7.00005-6" @default.
- W2896737786 hasPublicationYear "2019" @default.
- W2896737786 type Work @default.
- W2896737786 sameAs 2896737786 @default.
- W2896737786 citedByCount "2" @default.
- W2896737786 countsByYear W28967377862019 @default.
- W2896737786 countsByYear W28967377862020 @default.
- W2896737786 crossrefType "book-chapter" @default.
- W2896737786 hasAuthorship W2896737786A5001407295 @default.
- W2896737786 hasAuthorship W2896737786A5002793729 @default.
- W2896737786 hasAuthorship W2896737786A5057404604 @default.
- W2896737786 hasAuthorship W2896737786A5087360138 @default.
- W2896737786 hasConcept C115545448 @default.
- W2896737786 hasConcept C121332964 @default.
- W2896737786 hasConcept C127413603 @default.
- W2896737786 hasConcept C159985019 @default.
- W2896737786 hasConcept C171250308 @default.
- W2896737786 hasConcept C19067145 @default.
- W2896737786 hasConcept C192562407 @default.
- W2896737786 hasConcept C2779849746 @default.
- W2896737786 hasConcept C42360764 @default.
- W2896737786 hasConcept C44228677 @default.
- W2896737786 hasConcept C521977710 @default.
- W2896737786 hasConcept C62520636 @default.
- W2896737786 hasConcept C82706917 @default.
- W2896737786 hasConcept C85344455 @default.
- W2896737786 hasConceptScore W2896737786C115545448 @default.
- W2896737786 hasConceptScore W2896737786C121332964 @default.
- W2896737786 hasConceptScore W2896737786C127413603 @default.
- W2896737786 hasConceptScore W2896737786C159985019 @default.
- W2896737786 hasConceptScore W2896737786C171250308 @default.
- W2896737786 hasConceptScore W2896737786C19067145 @default.
- W2896737786 hasConceptScore W2896737786C192562407 @default.
- W2896737786 hasConceptScore W2896737786C2779849746 @default.
- W2896737786 hasConceptScore W2896737786C42360764 @default.
- W2896737786 hasConceptScore W2896737786C44228677 @default.
- W2896737786 hasConceptScore W2896737786C521977710 @default.
- W2896737786 hasConceptScore W2896737786C62520636 @default.
- W2896737786 hasConceptScore W2896737786C82706917 @default.
- W2896737786 hasConceptScore W2896737786C85344455 @default.
- W2896737786 hasLocation W28967377861 @default.
- W2896737786 hasOpenAccess W2896737786 @default.
- W2896737786 hasPrimaryLocation W28967377861 @default.
- W2896737786 hasRelatedWork W1984606943 @default.
- W2896737786 hasRelatedWork W201643535 @default.
- W2896737786 hasRelatedWork W2088914815 @default.
- W2896737786 hasRelatedWork W2090869369 @default.
- W2896737786 hasRelatedWork W2144907140 @default.
- W2896737786 hasRelatedWork W2748952813 @default.
- W2896737786 hasRelatedWork W2898626300 @default.
- W2896737786 hasRelatedWork W2899084033 @default.
- W2896737786 hasRelatedWork W4200411054 @default.
- W2896737786 hasRelatedWork W2189397931 @default.
- W2896737786 isParatext "false" @default.
- W2896737786 isRetracted "false" @default.
- W2896737786 magId "2896737786" @default.
- W2896737786 workType "book-chapter" @default.