Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896746300> ?p ?o ?g. }
- W2896746300 endingPage "521" @default.
- W2896746300 startingPage "506" @default.
- W2896746300 abstract "In modern education systems, plenty of research suggests that clustering the learners into optimal learning groups based on their multiple characteristics is a determining effort in enhancing the effectiveness of collaborative learning. Although there have been several evidences on developing and implementing appropriate computational tools to handle classification processes in expert and intelligent systems, the effectiveness and accuracy of optimal grouping algorithms are still worth improving. For instance, the majority of grouping processes in collaborative learning environments is orchestrated through single-objective optimization algorithms, which need to be revisited due to some intrinsic limitations. In this paper, we propose a novel algorithm capable of properly addressing a variety of optimization problems in optimal learning group formation processes. To this end, a multi-objective version of Genetic Algorithms, i.e. Non-dominated Sorting Genetic Algorithm, NSGA-II, was successfully implemented and applied to improve the performance and accuracy of optimally formed learning groups. In contrast to the previous related works applying single-objective algorithms, the main advantage of our work is simultaneous satisfaction of multiple targets predefined for the formation of optimal learning groups, especially the inter-homogeneity and intra-heterogeneity of each learning group, which significantly enhance both effectiveness and accuracy of optimal grouping processes in the underlying intelligent systems. Challenging the proposed optimization algorithms, both single- and multi-objective optimizers, with a similar grouping problem, clearly proved that the single-objective optimization technique has limited control and sensitivity to the quality of individual groups. Contrary to single-objective optimization techniques, which are mainly governed by adjusting the quality of the groups altogether in average, the proposed multi-objective algorithm not only takes the average desirability of all formed groups into account but also precisely monitors the fitness of each group in a potential solution distinctively. The generality of the proposed algorithm makes it a suitable candidate not only to handle optimal grouping in learning environments but also to be competent enough for grouping problems in other domains as well." @default.
- W2896746300 created "2018-10-26" @default.
- W2896746300 creator A5026632138 @default.
- W2896746300 creator A5031318875 @default.
- W2896746300 creator A5038680077 @default.
- W2896746300 creator A5054372178 @default.
- W2896746300 creator A5074384353 @default.
- W2896746300 date "2019-03-01" @default.
- W2896746300 modified "2023-10-16" @default.
- W2896746300 title "Optimal learning group formation: A multi-objective heuristic search strategy for enhancing inter-group homogeneity and intra-group heterogeneity" @default.
- W2896746300 cites W1966377566 @default.
- W2896746300 cites W1971090879 @default.
- W2896746300 cites W1973899877 @default.
- W2896746300 cites W1979835201 @default.
- W2896746300 cites W1985310129 @default.
- W2896746300 cites W1986326580 @default.
- W2896746300 cites W2001537191 @default.
- W2896746300 cites W2002504107 @default.
- W2896746300 cites W2011776890 @default.
- W2896746300 cites W2014561743 @default.
- W2896746300 cites W2018498219 @default.
- W2896746300 cites W2019236726 @default.
- W2896746300 cites W2019855372 @default.
- W2896746300 cites W2022173148 @default.
- W2896746300 cites W2026539971 @default.
- W2896746300 cites W2031775487 @default.
- W2896746300 cites W2034374916 @default.
- W2896746300 cites W2043106003 @default.
- W2896746300 cites W2047217382 @default.
- W2896746300 cites W2053429417 @default.
- W2896746300 cites W2059729828 @default.
- W2896746300 cites W2069862196 @default.
- W2896746300 cites W2082164330 @default.
- W2896746300 cites W2082186327 @default.
- W2896746300 cites W2086428232 @default.
- W2896746300 cites W2091104495 @default.
- W2896746300 cites W2092655173 @default.
- W2896746300 cites W2094589399 @default.
- W2896746300 cites W2095595785 @default.
- W2896746300 cites W2098810165 @default.
- W2896746300 cites W2098992993 @default.
- W2896746300 cites W2150963630 @default.
- W2896746300 cites W2163409911 @default.
- W2896746300 cites W2213518643 @default.
- W2896746300 cites W2266493004 @default.
- W2896746300 cites W2279275664 @default.
- W2896746300 cites W2284822720 @default.
- W2896746300 cites W2287925039 @default.
- W2896746300 cites W2298331526 @default.
- W2896746300 cites W2321965247 @default.
- W2896746300 cites W2322334644 @default.
- W2896746300 cites W2338111232 @default.
- W2896746300 cites W2344859764 @default.
- W2896746300 cites W2400709823 @default.
- W2896746300 cites W2402465780 @default.
- W2896746300 cites W2480943803 @default.
- W2896746300 cites W2506715828 @default.
- W2896746300 cites W2565646189 @default.
- W2896746300 cites W2570110812 @default.
- W2896746300 cites W2605450677 @default.
- W2896746300 cites W2618849455 @default.
- W2896746300 cites W2620574939 @default.
- W2896746300 cites W2648871561 @default.
- W2896746300 cites W2739887981 @default.
- W2896746300 cites W2751482852 @default.
- W2896746300 cites W2774324652 @default.
- W2896746300 cites W2800058025 @default.
- W2896746300 doi "https://doi.org/10.1016/j.eswa.2018.10.034" @default.
- W2896746300 hasPublicationYear "2019" @default.
- W2896746300 type Work @default.
- W2896746300 sameAs 2896746300 @default.
- W2896746300 citedByCount "10" @default.
- W2896746300 countsByYear W28967463002020 @default.
- W2896746300 countsByYear W28967463002021 @default.
- W2896746300 countsByYear W28967463002022 @default.
- W2896746300 countsByYear W28967463002023 @default.
- W2896746300 crossrefType "journal-article" @default.
- W2896746300 hasAuthorship W2896746300A5026632138 @default.
- W2896746300 hasAuthorship W2896746300A5031318875 @default.
- W2896746300 hasAuthorship W2896746300A5038680077 @default.
- W2896746300 hasAuthorship W2896746300A5054372178 @default.
- W2896746300 hasAuthorship W2896746300A5074384353 @default.
- W2896746300 hasBestOaLocation W28967463002 @default.
- W2896746300 hasConcept C111696304 @default.
- W2896746300 hasConcept C11413529 @default.
- W2896746300 hasConcept C119857082 @default.
- W2896746300 hasConcept C126255220 @default.
- W2896746300 hasConcept C154945302 @default.
- W2896746300 hasConcept C173801870 @default.
- W2896746300 hasConcept C33923547 @default.
- W2896746300 hasConcept C41008148 @default.
- W2896746300 hasConcept C73555534 @default.
- W2896746300 hasConcept C8880873 @default.
- W2896746300 hasConceptScore W2896746300C111696304 @default.
- W2896746300 hasConceptScore W2896746300C11413529 @default.
- W2896746300 hasConceptScore W2896746300C119857082 @default.
- W2896746300 hasConceptScore W2896746300C126255220 @default.
- W2896746300 hasConceptScore W2896746300C154945302 @default.