Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896747286> ?p ?o ?g. }
- W2896747286 endingPage "258" @default.
- W2896747286 startingPage "252" @default.
- W2896747286 abstract "Abstract Among grains, rice is one of the most widely consumed cereals in the world; it represents a staple food in great part of Asia and Africa, and it is also broadly diffused in America and Europe. One of the main issues of storing rice is to protect it from animal attacks; in particular, it is prone to insect infestation. Despite all the attempts made to avoid it (developing new physical barriers, traps and repellants), often food pests manage to break into granary and parcels, contaminating stored commodities. As a consequence, possible infestations must be continuously checked by producers and/or retailers. Different methods have been developed to detect insects in stored commodities, and, despite some of them demonstrated to perform well, they present the substantial limitation of being destructive. This latter characteristic undoubtedly leads to an obvious loss of product (and consequently, of profit), affecting farmers, retailers, and, finally, consumers. For this reason, the aim of the present work is to develop a methodology for the identification of insect infestation in stored rice by NIR spectroscopy coupled with discriminant and modeling classification methods. In particular, among all the different pests possibly present in granaries, the focus has been on detection of the Indian-meal moth (Plodia interpunctella), because it is considered one of the most common infesting insects. Different samples of rice, both infested and edible, coming from different farmers located in six different Countries (Cambodia, India, Italy, Pakistan, Suriname and Thailand) have been analyzed by NIR spectroscopy. Consequently, two different classification methods, Partial Least Squares Discriminant Analysis (PLS-DA) and Soft Independent Modeling of Class Analogy (SIMCA) have been applied in order to distinguish among infested and edible samples. In particular, PLS-DA allows correctly classifying 95.6% of the edible 97.5% of the contaminated samples (on the external validation set), whereas the SIMCA model, built only for the category of non-contaminated individuals, resulted highly specific (about 97%) but poorly sensitive on the test specimens. This latter approach (SIMCA) provided better predictions (in particular, in terms of sensitivity) when separate individual models were built subdividing samples in agreement with their country of origin." @default.
- W2896747286 created "2018-10-26" @default.
- W2896747286 creator A5008756415 @default.
- W2896747286 creator A5020680614 @default.
- W2896747286 creator A5030969506 @default.
- W2896747286 creator A5031063659 @default.
- W2896747286 creator A5083980594 @default.
- W2896747286 date "2019-03-01" @default.
- W2896747286 modified "2023-09-27" @default.
- W2896747286 title "Determination of insect infestation on stored rice by near infrared (NIR) spectroscopy" @default.
- W2896747286 cites W1965620477 @default.
- W2896747286 cites W1976144991 @default.
- W2896747286 cites W1978677160 @default.
- W2896747286 cites W1980609807 @default.
- W2896747286 cites W1990187682 @default.
- W2896747286 cites W2004594359 @default.
- W2896747286 cites W2007838376 @default.
- W2896747286 cites W2014696066 @default.
- W2896747286 cites W2016090370 @default.
- W2896747286 cites W2022732505 @default.
- W2896747286 cites W2034778619 @default.
- W2896747286 cites W2042798254 @default.
- W2896747286 cites W2045703397 @default.
- W2896747286 cites W2049598048 @default.
- W2896747286 cites W2058023873 @default.
- W2896747286 cites W2060394534 @default.
- W2896747286 cites W2063145959 @default.
- W2896747286 cites W2076905584 @default.
- W2896747286 cites W2080117179 @default.
- W2896747286 cites W2109606373 @default.
- W2896747286 cites W2118114232 @default.
- W2896747286 cites W2118125079 @default.
- W2896747286 cites W2140494105 @default.
- W2896747286 cites W2143711478 @default.
- W2896747286 cites W2164583936 @default.
- W2896747286 cites W2314128139 @default.
- W2896747286 cites W2330765725 @default.
- W2896747286 cites W2474177694 @default.
- W2896747286 cites W3644042 @default.
- W2896747286 doi "https://doi.org/10.1016/j.microc.2018.10.049" @default.
- W2896747286 hasPublicationYear "2019" @default.
- W2896747286 type Work @default.
- W2896747286 sameAs 2896747286 @default.
- W2896747286 citedByCount "52" @default.
- W2896747286 countsByYear W28967472862019 @default.
- W2896747286 countsByYear W28967472862020 @default.
- W2896747286 countsByYear W28967472862021 @default.
- W2896747286 countsByYear W28967472862022 @default.
- W2896747286 countsByYear W28967472862023 @default.
- W2896747286 crossrefType "journal-article" @default.
- W2896747286 hasAuthorship W2896747286A5008756415 @default.
- W2896747286 hasAuthorship W2896747286A5020680614 @default.
- W2896747286 hasAuthorship W2896747286A5030969506 @default.
- W2896747286 hasAuthorship W2896747286A5031063659 @default.
- W2896747286 hasAuthorship W2896747286A5083980594 @default.
- W2896747286 hasConcept C120665830 @default.
- W2896747286 hasConcept C121332964 @default.
- W2896747286 hasConcept C153642686 @default.
- W2896747286 hasConcept C158355884 @default.
- W2896747286 hasConcept C169760540 @default.
- W2896747286 hasConcept C178790620 @default.
- W2896747286 hasConcept C185592680 @default.
- W2896747286 hasConcept C192562407 @default.
- W2896747286 hasConcept C2776451879 @default.
- W2896747286 hasConcept C2777612826 @default.
- W2896747286 hasConcept C32891209 @default.
- W2896747286 hasConcept C43571822 @default.
- W2896747286 hasConcept C59822182 @default.
- W2896747286 hasConcept C62520636 @default.
- W2896747286 hasConcept C6557445 @default.
- W2896747286 hasConcept C86803240 @default.
- W2896747286 hasConceptScore W2896747286C120665830 @default.
- W2896747286 hasConceptScore W2896747286C121332964 @default.
- W2896747286 hasConceptScore W2896747286C153642686 @default.
- W2896747286 hasConceptScore W2896747286C158355884 @default.
- W2896747286 hasConceptScore W2896747286C169760540 @default.
- W2896747286 hasConceptScore W2896747286C178790620 @default.
- W2896747286 hasConceptScore W2896747286C185592680 @default.
- W2896747286 hasConceptScore W2896747286C192562407 @default.
- W2896747286 hasConceptScore W2896747286C2776451879 @default.
- W2896747286 hasConceptScore W2896747286C2777612826 @default.
- W2896747286 hasConceptScore W2896747286C32891209 @default.
- W2896747286 hasConceptScore W2896747286C43571822 @default.
- W2896747286 hasConceptScore W2896747286C59822182 @default.
- W2896747286 hasConceptScore W2896747286C62520636 @default.
- W2896747286 hasConceptScore W2896747286C6557445 @default.
- W2896747286 hasConceptScore W2896747286C86803240 @default.
- W2896747286 hasLocation W28967472861 @default.
- W2896747286 hasOpenAccess W2896747286 @default.
- W2896747286 hasPrimaryLocation W28967472861 @default.
- W2896747286 hasRelatedWork W1581719770 @default.
- W2896747286 hasRelatedWork W2000551948 @default.
- W2896747286 hasRelatedWork W2319475875 @default.
- W2896747286 hasRelatedWork W2362798571 @default.
- W2896747286 hasRelatedWork W2363187884 @default.
- W2896747286 hasRelatedWork W2366744508 @default.
- W2896747286 hasRelatedWork W2390633623 @default.
- W2896747286 hasRelatedWork W3086045625 @default.