Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896773368> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2896773368 abstract "In this paper, we present the integration of SIMT (Single Instruction Multiple Threads), Markov model and bivariate Gaussian distribution as a general-purpose technique for real-time accurate diagnosis of subclasses of arrhythmia. The model improves the accuracy by integrating both morphological and temporal features of ECG. GPU based implementation exploits concurrent execution of multiple threads at the heart-beat level to improve the execution efficiency. The approach builds a bivariate Gaussian Markov model (BGMM) for each subclass of arrhythmia where each state includes bivariate distribution of temporal and morphological features of each waveform and ISO-lines using ECG records for each subclass from standard databases, and the edge-weights represent the transition probabilities between states. Limited 30-second subsequences of a patient’s beats are used to develop bivariate Gaussian transition graphs (BGTG). BGTGs are matched with each of the BGMMs to derive the exact classification of BGTGs. Our approach exploits data-parallelism at the beat level for ECG preprocessing, building BGTGs and matching multiple BGTG-BGMM pairs. SIMT (Single Instruction Multiple Thread) available on CUDA resources in GPU has been utilized to exploit data-parallelism. Algorithms have been presented. The system has been implemented on a machine with NVIDIA CUDA based GPU. Test results on standard MIT- BIH database show that GPU based SIMT improves execution time further by 78% with an overall speedup of 4.5 while retaining the accuracy achieved by the sequential execution of the approach around 98%." @default.
- W2896773368 created "2018-10-26" @default.
- W2896773368 creator A5003315018 @default.
- W2896773368 creator A5072602756 @default.
- W2896773368 creator A5087544485 @default.
- W2896773368 date "2018-10-18" @default.
- W2896773368 modified "2023-09-24" @default.
- W2896773368 title "Integrating Markov Model, Bivariate Gaussian Distribution and GPU Based Parallelization for Accurate Real-Time Diagnosis of Arrhythmia Subclasses" @default.
- W2896773368 cites W1608246581 @default.
- W2896773368 cites W2124476602 @default.
- W2896773368 cites W2134144792 @default.
- W2896773368 cites W2168816777 @default.
- W2896773368 cites W2286742378 @default.
- W2896773368 cites W2288190059 @default.
- W2896773368 cites W2392474488 @default.
- W2896773368 cites W2534582088 @default.
- W2896773368 cites W2552572549 @default.
- W2896773368 cites W2576579481 @default.
- W2896773368 cites W2606116894 @default.
- W2896773368 cites W2748243244 @default.
- W2896773368 cites W274839140 @default.
- W2896773368 cites W3217261033 @default.
- W2896773368 doi "https://doi.org/10.1007/978-3-030-02686-8_43" @default.
- W2896773368 hasPublicationYear "2018" @default.
- W2896773368 type Work @default.
- W2896773368 sameAs 2896773368 @default.
- W2896773368 citedByCount "0" @default.
- W2896773368 crossrefType "book-chapter" @default.
- W2896773368 hasAuthorship W2896773368A5003315018 @default.
- W2896773368 hasAuthorship W2896773368A5072602756 @default.
- W2896773368 hasAuthorship W2896773368A5087544485 @default.
- W2896773368 hasConcept C111919701 @default.
- W2896773368 hasConcept C11413529 @default.
- W2896773368 hasConcept C119857082 @default.
- W2896773368 hasConcept C121332964 @default.
- W2896773368 hasConcept C138101251 @default.
- W2896773368 hasConcept C163716315 @default.
- W2896773368 hasConcept C173608175 @default.
- W2896773368 hasConcept C2778119891 @default.
- W2896773368 hasConcept C41008148 @default.
- W2896773368 hasConcept C62520636 @default.
- W2896773368 hasConcept C64341305 @default.
- W2896773368 hasConcept C68339613 @default.
- W2896773368 hasConceptScore W2896773368C111919701 @default.
- W2896773368 hasConceptScore W2896773368C11413529 @default.
- W2896773368 hasConceptScore W2896773368C119857082 @default.
- W2896773368 hasConceptScore W2896773368C121332964 @default.
- W2896773368 hasConceptScore W2896773368C138101251 @default.
- W2896773368 hasConceptScore W2896773368C163716315 @default.
- W2896773368 hasConceptScore W2896773368C173608175 @default.
- W2896773368 hasConceptScore W2896773368C2778119891 @default.
- W2896773368 hasConceptScore W2896773368C41008148 @default.
- W2896773368 hasConceptScore W2896773368C62520636 @default.
- W2896773368 hasConceptScore W2896773368C64341305 @default.
- W2896773368 hasConceptScore W2896773368C68339613 @default.
- W2896773368 hasLocation W28967733681 @default.
- W2896773368 hasOpenAccess W2896773368 @default.
- W2896773368 hasPrimaryLocation W28967733681 @default.
- W2896773368 hasRelatedWork W108745714 @default.
- W2896773368 hasRelatedWork W1508433462 @default.
- W2896773368 hasRelatedWork W184060744 @default.
- W2896773368 hasRelatedWork W1997405506 @default.
- W2896773368 hasRelatedWork W2122539631 @default.
- W2896773368 hasRelatedWork W2122653654 @default.
- W2896773368 hasRelatedWork W2203549461 @default.
- W2896773368 hasRelatedWork W2554447585 @default.
- W2896773368 hasRelatedWork W2598117646 @default.
- W2896773368 hasRelatedWork W2954292268 @default.
- W2896773368 isParatext "false" @default.
- W2896773368 isRetracted "false" @default.
- W2896773368 magId "2896773368" @default.
- W2896773368 workType "book-chapter" @default.