Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896774879> ?p ?o ?g. }
- W2896774879 endingPage "455" @default.
- W2896774879 startingPage "444" @default.
- W2896774879 abstract "Underwater sea cucumber images are blurred and contain complex backgrounds. To improve the efficiency of sea cucumber identification, a method based on Principal Component Analysis (PCA) and Support Vector Machine (SVM) was proposed. Firstly, colours, textures and shapes of the sample images were extracted. Then, each feature was used separately to train SVM to identify the target. These features were sorted by identification rate. PCA-SVM was used to train the classifier, and the classifier was proposed to identify sea cucumber images. The accuracy of our proposed method was 98.55%, the time taken was 0.73 s. These results were compared with those of Genetic Algorithm (GA)-SVM (97.10%, 19.50 s), Ant Colony Optimization (ACO)-SVM (94.20%, 228.72 s), and Artificial Neural Networks (ANN) (97.10%, 1.25 s). PCA-SVM had the highest accuracy and the shortest time. Thus, PCA-SVM as proposed herein could satisfy the requirement that an underwater robot rapidly and precisely identify sea cucumber objects in a real environment." @default.
- W2896774879 created "2018-10-26" @default.
- W2896774879 creator A5020779586 @default.
- W2896774879 creator A5035730229 @default.
- W2896774879 creator A5039021048 @default.
- W2896774879 creator A5060664053 @default.
- W2896774879 creator A5074743331 @default.
- W2896774879 date "2019-02-01" @default.
- W2896774879 modified "2023-10-18" @default.
- W2896774879 title "fvUnderwater sea cucumber identification based on Principal Component Analysis and Support Vector Machine" @default.
- W2896774879 cites W1579574219 @default.
- W2896774879 cites W1977140987 @default.
- W2896774879 cites W1982356933 @default.
- W2896774879 cites W1988445395 @default.
- W2896774879 cites W2017518434 @default.
- W2896774879 cites W2023057971 @default.
- W2896774879 cites W2041221361 @default.
- W2896774879 cites W2059432853 @default.
- W2896774879 cites W2126906898 @default.
- W2896774879 cites W2142544985 @default.
- W2896774879 cites W2143621217 @default.
- W2896774879 cites W2159498975 @default.
- W2896774879 cites W2186155590 @default.
- W2896774879 cites W2262414298 @default.
- W2896774879 cites W2294549373 @default.
- W2896774879 cites W2313305498 @default.
- W2896774879 cites W2319286348 @default.
- W2896774879 cites W2385915143 @default.
- W2896774879 cites W2389080410 @default.
- W2896774879 cites W2466183141 @default.
- W2896774879 cites W2467909811 @default.
- W2896774879 cites W2484375177 @default.
- W2896774879 cites W2522256182 @default.
- W2896774879 cites W2552750372 @default.
- W2896774879 cites W2556141502 @default.
- W2896774879 cites W2561620318 @default.
- W2896774879 cites W2565635308 @default.
- W2896774879 cites W2570470364 @default.
- W2896774879 cites W2587935902 @default.
- W2896774879 cites W2594184252 @default.
- W2896774879 cites W2622562231 @default.
- W2896774879 cites W2626450122 @default.
- W2896774879 cites W2772116272 @default.
- W2896774879 cites W2778176826 @default.
- W2896774879 cites W4210683969 @default.
- W2896774879 cites W4239510810 @default.
- W2896774879 doi "https://doi.org/10.1016/j.measurement.2018.10.039" @default.
- W2896774879 hasPublicationYear "2019" @default.
- W2896774879 type Work @default.
- W2896774879 sameAs 2896774879 @default.
- W2896774879 citedByCount "26" @default.
- W2896774879 countsByYear W28967748792019 @default.
- W2896774879 countsByYear W28967748792020 @default.
- W2896774879 countsByYear W28967748792021 @default.
- W2896774879 countsByYear W28967748792022 @default.
- W2896774879 countsByYear W28967748792023 @default.
- W2896774879 crossrefType "journal-article" @default.
- W2896774879 hasAuthorship W2896774879A5020779586 @default.
- W2896774879 hasAuthorship W2896774879A5035730229 @default.
- W2896774879 hasAuthorship W2896774879A5039021048 @default.
- W2896774879 hasAuthorship W2896774879A5060664053 @default.
- W2896774879 hasAuthorship W2896774879A5074743331 @default.
- W2896774879 hasBestOaLocation W28967748791 @default.
- W2896774879 hasConcept C12267149 @default.
- W2896774879 hasConcept C153180895 @default.
- W2896774879 hasConcept C154945302 @default.
- W2896774879 hasConcept C18903297 @default.
- W2896774879 hasConcept C27438332 @default.
- W2896774879 hasConcept C2776093933 @default.
- W2896774879 hasConcept C40128228 @default.
- W2896774879 hasConcept C41008148 @default.
- W2896774879 hasConcept C50644808 @default.
- W2896774879 hasConcept C52622490 @default.
- W2896774879 hasConcept C86803240 @default.
- W2896774879 hasConcept C95623464 @default.
- W2896774879 hasConceptScore W2896774879C12267149 @default.
- W2896774879 hasConceptScore W2896774879C153180895 @default.
- W2896774879 hasConceptScore W2896774879C154945302 @default.
- W2896774879 hasConceptScore W2896774879C18903297 @default.
- W2896774879 hasConceptScore W2896774879C27438332 @default.
- W2896774879 hasConceptScore W2896774879C2776093933 @default.
- W2896774879 hasConceptScore W2896774879C40128228 @default.
- W2896774879 hasConceptScore W2896774879C41008148 @default.
- W2896774879 hasConceptScore W2896774879C50644808 @default.
- W2896774879 hasConceptScore W2896774879C52622490 @default.
- W2896774879 hasConceptScore W2896774879C86803240 @default.
- W2896774879 hasConceptScore W2896774879C95623464 @default.
- W2896774879 hasFunder F4320321001 @default.
- W2896774879 hasFunder F4320322736 @default.
- W2896774879 hasFunder F4320337504 @default.
- W2896774879 hasFunder F4320338074 @default.
- W2896774879 hasLocation W28967748791 @default.
- W2896774879 hasLocation W28967748792 @default.
- W2896774879 hasOpenAccess W2896774879 @default.
- W2896774879 hasPrimaryLocation W28967748791 @default.
- W2896774879 hasRelatedWork W1989345451 @default.
- W2896774879 hasRelatedWork W2093008230 @default.
- W2896774879 hasRelatedWork W2363334144 @default.