Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896780084> ?p ?o ?g. }
- W2896780084 endingPage "51" @default.
- W2896780084 startingPage "27" @default.
- W2896780084 abstract "This chapter aims to study human activity recognition, in an uncontrolled environment, using an iPhone, an Apple Watch and an Apple TV remote. The iPhone and the Apple Watch contain an accelerometer, a gyroscope and a microphone. The Apple TV remote contains an accelerometer and a gyroscope. After extracting sensor data from these three devices, they are then given as input to a deep neural network (DNN) without prior and specific preprocessing of these data, that is, by taking raw data alone. The iPhone is then put in the pants pocket of participants, while the Apple TV remote is held in the hand. The chapter shows that DNN provides better results than decision tree (DT) and support vector machine (SVM) algorithms. The results also show that some participants' activities were classified with an accuracy of more than 98%, on average." @default.
- W2896780084 created "2018-10-26" @default.
- W2896780084 creator A5039660232 @default.
- W2896780084 creator A5047089358 @default.
- W2896780084 creator A5079047915 @default.
- W2896780084 date "2018-09-28" @default.
- W2896780084 modified "2023-10-17" @default.
- W2896780084 title "Deep Learning Approach of Raw Human Activity Data" @default.
- W2896780084 cites W1496704041 @default.
- W2896780084 cites W1840860027 @default.
- W2896780084 cites W1931443116 @default.
- W2896780084 cites W1963876782 @default.
- W2896780084 cites W1969307352 @default.
- W2896780084 cites W1975564121 @default.
- W2896780084 cites W1988734556 @default.
- W2896780084 cites W1993160410 @default.
- W2896780084 cites W2002748000 @default.
- W2896780084 cites W2006702209 @default.
- W2896780084 cites W2008311091 @default.
- W2896780084 cites W2009729666 @default.
- W2896780084 cites W2017634428 @default.
- W2896780084 cites W2019342228 @default.
- W2896780084 cites W2027726712 @default.
- W2896780084 cites W2045065444 @default.
- W2896780084 cites W2048196003 @default.
- W2896780084 cites W2061125214 @default.
- W2896780084 cites W2065264532 @default.
- W2896780084 cites W2072866921 @default.
- W2896780084 cites W2073668559 @default.
- W2896780084 cites W2078770647 @default.
- W2896780084 cites W2085217701 @default.
- W2896780084 cites W2085662862 @default.
- W2896780084 cites W2089005490 @default.
- W2896780084 cites W2090766960 @default.
- W2896780084 cites W2097575504 @default.
- W2896780084 cites W2100495367 @default.
- W2896780084 cites W2103334803 @default.
- W2896780084 cites W2103983571 @default.
- W2896780084 cites W2105046342 @default.
- W2896780084 cites W2107008217 @default.
- W2896780084 cites W2121042048 @default.
- W2896780084 cites W2128121198 @default.
- W2896780084 cites W2134240702 @default.
- W2896780084 cites W2141641165 @default.
- W2896780084 cites W2146784275 @default.
- W2896780084 cites W2147898329 @default.
- W2896780084 cites W2153657339 @default.
- W2896780084 cites W2154991835 @default.
- W2896780084 cites W2157519031 @default.
- W2896780084 cites W2162415752 @default.
- W2896780084 cites W2165069934 @default.
- W2896780084 cites W2170614756 @default.
- W2896780084 cites W2262806837 @default.
- W2896780084 cites W2338316711 @default.
- W2896780084 cites W2342865424 @default.
- W2896780084 cites W2461354046 @default.
- W2896780084 cites W2463094838 @default.
- W2896780084 cites W2466983165 @default.
- W2896780084 cites W2561894372 @default.
- W2896780084 cites W2583282266 @default.
- W2896780084 cites W2583959112 @default.
- W2896780084 cites W2769288932 @default.
- W2896780084 cites W3121416125 @default.
- W2896780084 cites W4246577894 @default.
- W2896780084 cites W4255404355 @default.
- W2896780084 doi "https://doi.org/10.1002/9781119549765.ch2" @default.
- W2896780084 hasPublicationYear "2018" @default.
- W2896780084 type Work @default.
- W2896780084 sameAs 2896780084 @default.
- W2896780084 citedByCount "0" @default.
- W2896780084 crossrefType "other" @default.
- W2896780084 hasAuthorship W2896780084A5039660232 @default.
- W2896780084 hasAuthorship W2896780084A5047089358 @default.
- W2896780084 hasAuthorship W2896780084A5079047915 @default.
- W2896780084 hasConcept C10551718 @default.
- W2896780084 hasConcept C111919701 @default.
- W2896780084 hasConcept C12267149 @default.
- W2896780084 hasConcept C127413603 @default.
- W2896780084 hasConcept C132964779 @default.
- W2896780084 hasConcept C146978453 @default.
- W2896780084 hasConcept C154945302 @default.
- W2896780084 hasConcept C158488048 @default.
- W2896780084 hasConcept C199360897 @default.
- W2896780084 hasConcept C2778263558 @default.
- W2896780084 hasConcept C28490314 @default.
- W2896780084 hasConcept C34736171 @default.
- W2896780084 hasConcept C41008148 @default.
- W2896780084 hasConcept C50644808 @default.
- W2896780084 hasConcept C68115822 @default.
- W2896780084 hasConcept C76155785 @default.
- W2896780084 hasConcept C84525736 @default.
- W2896780084 hasConcept C89805583 @default.
- W2896780084 hasConceptScore W2896780084C10551718 @default.
- W2896780084 hasConceptScore W2896780084C111919701 @default.
- W2896780084 hasConceptScore W2896780084C12267149 @default.
- W2896780084 hasConceptScore W2896780084C127413603 @default.
- W2896780084 hasConceptScore W2896780084C132964779 @default.
- W2896780084 hasConceptScore W2896780084C146978453 @default.