Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896780691> ?p ?o ?g. }
- W2896780691 endingPage "490" @default.
- W2896780691 startingPage "479" @default.
- W2896780691 abstract "Purpose Methods have been recently developed to generate pseudo–computed tomography (pCT) for dose calculation in magnetic resonance imaging (MRI)–only radiation therapy. This study aimed to propose an original nonlocal mean patch-based method (PBM) and to compare this PBM to an atlas-based method (ABM) and to a bulk density method (BDM) for prostate MRI-only radiation therapy. Materials and Methods Thirty-nine patients received a volumetric modulated arc therapy for prostate cancer. In addition to the planning computed tomography (CT) scans, T2-weighted MRI scans were acquired. pCTs were generated from MRIs using 3 methods: an original nonlocal mean PBM, ABM, and BDM. The PBM was performed using feature extraction and approximate nearest neighbor search in a training cohort. The PBM accuracy was evaluated in a validation cohort by using imaging and dosimetric endpoints. Imaging endpoints included mean absolute error and mean error between Hounsfield units of the pCT and the reference CT (CTref). Dosimetric endpoints were based on dose-volume histograms calculated from the CTref and the pCTs for various volumes of interest and on 3-dimensional gamma analyses. The PBM uncertainties were compared with those of the ABM and BDM. Results The mean absolute error and mean error obtained from the PBM were 41.1 and –1.1 Hounsfield units. The PBM dose-volume histogram differences were 0.7% for prostate planning target volume V95%, 0.5% for rectum V70Gy, and 0.2% for bladder V50Gy. Compared with ABM and BDM, PBM provided significantly lower dose uncertainties for the prostate planning target volume (70-78 Gy), the rectum (8.5-29 Gy, 40-48 Gy, and 61-73 Gy), and the bladder (12-78 Gy). The PBM mean gamma pass rate (99.5%) was significantly higher than that of ABM (94.9%) or BDM (96.1%). Conclusions The proposed PBM provides low uncertainties with dose planned on CTref. These uncertainties were smaller than those of ABM and BDM and are unlikely to be clinically significant. Methods have been recently developed to generate pseudo–computed tomography (pCT) for dose calculation in magnetic resonance imaging (MRI)–only radiation therapy. This study aimed to propose an original nonlocal mean patch-based method (PBM) and to compare this PBM to an atlas-based method (ABM) and to a bulk density method (BDM) for prostate MRI-only radiation therapy. Thirty-nine patients received a volumetric modulated arc therapy for prostate cancer. In addition to the planning computed tomography (CT) scans, T2-weighted MRI scans were acquired. pCTs were generated from MRIs using 3 methods: an original nonlocal mean PBM, ABM, and BDM. The PBM was performed using feature extraction and approximate nearest neighbor search in a training cohort. The PBM accuracy was evaluated in a validation cohort by using imaging and dosimetric endpoints. Imaging endpoints included mean absolute error and mean error between Hounsfield units of the pCT and the reference CT (CTref). Dosimetric endpoints were based on dose-volume histograms calculated from the CTref and the pCTs for various volumes of interest and on 3-dimensional gamma analyses. The PBM uncertainties were compared with those of the ABM and BDM. The mean absolute error and mean error obtained from the PBM were 41.1 and –1.1 Hounsfield units. The PBM dose-volume histogram differences were 0.7% for prostate planning target volume V95%, 0.5% for rectum V70Gy, and 0.2% for bladder V50Gy. Compared with ABM and BDM, PBM provided significantly lower dose uncertainties for the prostate planning target volume (70-78 Gy), the rectum (8.5-29 Gy, 40-48 Gy, and 61-73 Gy), and the bladder (12-78 Gy). The PBM mean gamma pass rate (99.5%) was significantly higher than that of ABM (94.9%) or BDM (96.1%). The proposed PBM provides low uncertainties with dose planned on CTref. These uncertainties were smaller than those of ABM and BDM and are unlikely to be clinically significant." @default.
- W2896780691 created "2018-10-26" @default.
- W2896780691 creator A5000825099 @default.
- W2896780691 creator A5004560596 @default.
- W2896780691 creator A5022311311 @default.
- W2896780691 creator A5027631109 @default.
- W2896780691 creator A5039254152 @default.
- W2896780691 creator A5051084728 @default.
- W2896780691 creator A5069024778 @default.
- W2896780691 creator A5085210497 @default.
- W2896780691 creator A5085425260 @default.
- W2896780691 date "2019-02-01" @default.
- W2896780691 modified "2023-10-14" @default.
- W2896780691 title "Pseudo-CT Generation for MRI-Only Radiation Therapy Treatment Planning: Comparison Among Patch-Based, Atlas-Based, and Bulk Density Methods" @default.
- W2896780691 cites W136839944 @default.
- W2896780691 cites W1558579465 @default.
- W2896780691 cites W1822713087 @default.
- W2896780691 cites W1963072903 @default.
- W2896780691 cites W1969750491 @default.
- W2896780691 cites W1982095138 @default.
- W2896780691 cites W1987869189 @default.
- W2896780691 cites W1994672425 @default.
- W2896780691 cites W2020195866 @default.
- W2896780691 cites W2021177063 @default.
- W2896780691 cites W2026752633 @default.
- W2896780691 cites W2046701188 @default.
- W2896780691 cites W2046812072 @default.
- W2896780691 cites W2070935120 @default.
- W2896780691 cites W2080858163 @default.
- W2896780691 cites W2082468369 @default.
- W2896780691 cites W2087726204 @default.
- W2896780691 cites W2088667195 @default.
- W2896780691 cites W2096305085 @default.
- W2896780691 cites W2099510473 @default.
- W2896780691 cites W2117340355 @default.
- W2896780691 cites W2124904604 @default.
- W2896780691 cites W2128124359 @default.
- W2896780691 cites W2162246940 @default.
- W2896780691 cites W2208340121 @default.
- W2896780691 cites W2346304842 @default.
- W2896780691 cites W2493869572 @default.
- W2896780691 cites W2510869579 @default.
- W2896780691 cites W2519106229 @default.
- W2896780691 cites W2523468284 @default.
- W2896780691 cites W2549512150 @default.
- W2896780691 cites W2759545098 @default.
- W2896780691 cites W2764067625 @default.
- W2896780691 cites W2765246041 @default.
- W2896780691 cites W2771678676 @default.
- W2896780691 cites W2805992239 @default.
- W2896780691 cites W2808312419 @default.
- W2896780691 cites W3101123465 @default.
- W2896780691 doi "https://doi.org/10.1016/j.ijrobp.2018.10.002" @default.
- W2896780691 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30336265" @default.
- W2896780691 hasPublicationYear "2019" @default.
- W2896780691 type Work @default.
- W2896780691 sameAs 2896780691 @default.
- W2896780691 citedByCount "30" @default.
- W2896780691 countsByYear W28967806912019 @default.
- W2896780691 countsByYear W28967806912020 @default.
- W2896780691 countsByYear W28967806912021 @default.
- W2896780691 countsByYear W28967806912022 @default.
- W2896780691 countsByYear W28967806912023 @default.
- W2896780691 crossrefType "journal-article" @default.
- W2896780691 hasAuthorship W2896780691A5000825099 @default.
- W2896780691 hasAuthorship W2896780691A5004560596 @default.
- W2896780691 hasAuthorship W2896780691A5022311311 @default.
- W2896780691 hasAuthorship W2896780691A5027631109 @default.
- W2896780691 hasAuthorship W2896780691A5039254152 @default.
- W2896780691 hasAuthorship W2896780691A5051084728 @default.
- W2896780691 hasAuthorship W2896780691A5069024778 @default.
- W2896780691 hasAuthorship W2896780691A5085210497 @default.
- W2896780691 hasAuthorship W2896780691A5085425260 @default.
- W2896780691 hasConcept C115961682 @default.
- W2896780691 hasConcept C121608353 @default.
- W2896780691 hasConcept C126322002 @default.
- W2896780691 hasConcept C126838900 @default.
- W2896780691 hasConcept C143409427 @default.
- W2896780691 hasConcept C154945302 @default.
- W2896780691 hasConcept C187954543 @default.
- W2896780691 hasConcept C201645570 @default.
- W2896780691 hasConcept C2776235491 @default.
- W2896780691 hasConcept C2780192828 @default.
- W2896780691 hasConcept C2780198649 @default.
- W2896780691 hasConcept C2989005 @default.
- W2896780691 hasConcept C41008148 @default.
- W2896780691 hasConcept C509974204 @default.
- W2896780691 hasConcept C53533937 @default.
- W2896780691 hasConcept C544519230 @default.
- W2896780691 hasConcept C71924100 @default.
- W2896780691 hasConceptScore W2896780691C115961682 @default.
- W2896780691 hasConceptScore W2896780691C121608353 @default.
- W2896780691 hasConceptScore W2896780691C126322002 @default.
- W2896780691 hasConceptScore W2896780691C126838900 @default.
- W2896780691 hasConceptScore W2896780691C143409427 @default.
- W2896780691 hasConceptScore W2896780691C154945302 @default.
- W2896780691 hasConceptScore W2896780691C187954543 @default.
- W2896780691 hasConceptScore W2896780691C201645570 @default.