Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896787456> ?p ?o ?g. }
- W2896787456 abstract "We study how delivery data can be applied to improve the on-time performance of last mile delivery services. Motivated by the delivery operations and data of a food delivery service provider, we discuss a framework that integrates the travel time predictors with the order assignment optimization. Such integration enables us to capture the driver's routing behavior in practice, where the driver's decision-making process is often unobservable or intricate to model. Focusing on the order assignment problem as an example, we discuss the classes of tractable predictors and prediction models that are highly compatible with the existing stochastic and robust optimization tools. We further provide reformulations of the integrated models, which can be efficiently solved with the proposed branch-and-price algorithm. Moreover, we propose two simple heuristics for the multiperiod order assignment problem, which are built upon the single-period solutions. Using the delivery data, our numerical experiments on a real-world application not only demonstrate the superior performance of our proposed order assignment models with travel time predictors, but also highlight the importance of learning the behavioral aspects from the operational data. We find that large sample size does not necessarily compensate for the misspecification of the driver's routing behavior" @default.
- W2896787456 created "2018-10-26" @default.
- W2896787456 creator A5012457625 @default.
- W2896787456 creator A5059136372 @default.
- W2896787456 creator A5062776325 @default.
- W2896787456 date "2018-01-01" @default.
- W2896787456 modified "2023-09-24" @default.
- W2896787456 title "Data-Driven Order Assignment for Last Mile Delivery" @default.
- W2896787456 cites W1968355947 @default.
- W2896787456 cites W1969173563 @default.
- W2896787456 cites W1971739135 @default.
- W2896787456 cites W1983916623 @default.
- W2896787456 cites W1985617197 @default.
- W2896787456 cites W1987361686 @default.
- W2896787456 cites W1993599556 @default.
- W2896787456 cites W2005388202 @default.
- W2896787456 cites W2014068360 @default.
- W2896787456 cites W2020789581 @default.
- W2896787456 cites W2022069507 @default.
- W2896787456 cites W2041110476 @default.
- W2896787456 cites W2041818766 @default.
- W2896787456 cites W2046280257 @default.
- W2896787456 cites W2053933584 @default.
- W2896787456 cites W2068535610 @default.
- W2896787456 cites W2078613048 @default.
- W2896787456 cites W2085495522 @default.
- W2896787456 cites W2089052211 @default.
- W2896787456 cites W2096305430 @default.
- W2896787456 cites W2096796578 @default.
- W2896787456 cites W2098763115 @default.
- W2896787456 cites W2105972067 @default.
- W2896787456 cites W211137677 @default.
- W2896787456 cites W2113574878 @default.
- W2896787456 cites W2125417745 @default.
- W2896787456 cites W2141505357 @default.
- W2896787456 cites W2158964090 @default.
- W2896787456 cites W2166635235 @default.
- W2896787456 cites W2167580124 @default.
- W2896787456 cites W2171873735 @default.
- W2896787456 cites W2172161950 @default.
- W2896787456 cites W2174890733 @default.
- W2896787456 cites W2178346364 @default.
- W2896787456 cites W2236944418 @default.
- W2896787456 cites W2294857104 @default.
- W2896787456 cites W2301290695 @default.
- W2896787456 cites W2302781442 @default.
- W2896787456 cites W2395721444 @default.
- W2896787456 cites W2407395752 @default.
- W2896787456 cites W2412227734 @default.
- W2896787456 cites W2464025377 @default.
- W2896787456 cites W2491937722 @default.
- W2896787456 cites W2557446172 @default.
- W2896787456 cites W2577832527 @default.
- W2896787456 cites W2604736517 @default.
- W2896787456 cites W2715235799 @default.
- W2896787456 cites W2802557767 @default.
- W2896787456 cites W2901323357 @default.
- W2896787456 cites W2901816197 @default.
- W2896787456 cites W2904920481 @default.
- W2896787456 cites W2988516428 @default.
- W2896787456 cites W3015174933 @default.
- W2896787456 cites W3105174740 @default.
- W2896787456 cites W3121331425 @default.
- W2896787456 cites W3122167207 @default.
- W2896787456 cites W3123290426 @default.
- W2896787456 cites W3123383311 @default.
- W2896787456 cites W3123436987 @default.
- W2896787456 cites W4241589022 @default.
- W2896787456 cites W600369020 @default.
- W2896787456 doi "https://doi.org/10.2139/ssrn.3179994" @default.
- W2896787456 hasPublicationYear "2018" @default.
- W2896787456 type Work @default.
- W2896787456 sameAs 2896787456 @default.
- W2896787456 citedByCount "7" @default.
- W2896787456 countsByYear W28967874562018 @default.
- W2896787456 countsByYear W28967874562019 @default.
- W2896787456 countsByYear W28967874562020 @default.
- W2896787456 countsByYear W28967874562021 @default.
- W2896787456 countsByYear W28967874562022 @default.
- W2896787456 crossrefType "journal-article" @default.
- W2896787456 hasAuthorship W2896787456A5012457625 @default.
- W2896787456 hasAuthorship W2896787456A5059136372 @default.
- W2896787456 hasAuthorship W2896787456A5062776325 @default.
- W2896787456 hasConcept C10138342 @default.
- W2896787456 hasConcept C13280743 @default.
- W2896787456 hasConcept C144133560 @default.
- W2896787456 hasConcept C182306322 @default.
- W2896787456 hasConcept C186379835 @default.
- W2896787456 hasConcept C205649164 @default.
- W2896787456 hasConcept C41008148 @default.
- W2896787456 hasConcept C45440154 @default.
- W2896787456 hasConceptScore W2896787456C10138342 @default.
- W2896787456 hasConceptScore W2896787456C13280743 @default.
- W2896787456 hasConceptScore W2896787456C144133560 @default.
- W2896787456 hasConceptScore W2896787456C182306322 @default.
- W2896787456 hasConceptScore W2896787456C186379835 @default.
- W2896787456 hasConceptScore W2896787456C205649164 @default.
- W2896787456 hasConceptScore W2896787456C41008148 @default.
- W2896787456 hasConceptScore W2896787456C45440154 @default.
- W2896787456 hasLocation W28967874561 @default.