Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896789611> ?p ?o ?g. }
- W2896789611 endingPage "182" @default.
- W2896789611 startingPage "159" @default.
- W2896789611 abstract "The axioms ZFC of first order set theory are one of the best and most widely accepted, if not perfect, foundations used in mathematics. Just as the axioms of first order Peano Arithmetic, ZFC axioms form a recursively enumerable list of axioms, and are, then, subject to Gödel’s Incompleteness Theorems. Hence, if they are assumed to be consistent, they are necessarily incomplete. This can be witnessed by various concrete statements, including the celebrated Continuum Hypothesis CH. The independence results about the infinite cardinals are so abundant that it often appears that ZFC can basically prove very little about such cardinals. However, we put forward a thesis that ZFC is actually very powerful at some infinite cardinals, but not at all of them. We have to move away from the first few and to look at limits of uncountable cardinals, such as $$ aleph _omega $$ . Specifically, we work with singular cardinals (which are necessarily limits) and we illustrate that at such cardinals there is a very serious limit to independence and that many statements which are known to be independent on regular cardinals become provable or refutable by ZFC at singulars. In a certain sense, which we explain, the behavior of the set-theoretic universe is asymptotically determined at singular cardinals by the behavior that the universe assumes at the smaller regular cardinals. Foundationally, ZFC provides an asymptotically univocal image of the universe of sets around the singular cardinals. We also give a philosophical view accounting for the relevance of these claims in a platonistic perspective which is different from traditional mathematical platonism." @default.
- W2896789611 created "2018-10-26" @default.
- W2896789611 creator A5037145063 @default.
- W2896789611 creator A5062627891 @default.
- W2896789611 date "2018-01-01" @default.
- W2896789611 modified "2023-09-30" @default.
- W2896789611 title "Asymptotic Quasi-completeness and ZFC" @default.
- W2896789611 cites W1487756945 @default.
- W2896789611 cites W1543500847 @default.
- W2896789611 cites W157554669 @default.
- W2896789611 cites W1605337124 @default.
- W2896789611 cites W1919205046 @default.
- W2896789611 cites W1963677918 @default.
- W2896789611 cites W1982734198 @default.
- W2896789611 cites W1988358152 @default.
- W2896789611 cites W1998865204 @default.
- W2896789611 cites W2007983321 @default.
- W2896789611 cites W2012014930 @default.
- W2896789611 cites W2014764902 @default.
- W2896789611 cites W2028133252 @default.
- W2896789611 cites W2035518801 @default.
- W2896789611 cites W2071267962 @default.
- W2896789611 cites W2074555777 @default.
- W2896789611 cites W2075810781 @default.
- W2896789611 cites W2088381392 @default.
- W2896789611 cites W2115456387 @default.
- W2896789611 cites W2117052487 @default.
- W2896789611 cites W2126098892 @default.
- W2896789611 cites W2147031526 @default.
- W2896789611 cites W2211105006 @default.
- W2896789611 cites W2528693812 @default.
- W2896789611 cites W2950415555 @default.
- W2896789611 cites W4250759545 @default.
- W2896789611 cites W4256369010 @default.
- W2896789611 cites W4256426709 @default.
- W2896789611 cites W773517012 @default.
- W2896789611 cites W943508897 @default.
- W2896789611 doi "https://doi.org/10.1007/978-3-319-98797-2_8" @default.
- W2896789611 hasPublicationYear "2018" @default.
- W2896789611 type Work @default.
- W2896789611 sameAs 2896789611 @default.
- W2896789611 citedByCount "1" @default.
- W2896789611 countsByYear W28967896112019 @default.
- W2896789611 crossrefType "book-chapter" @default.
- W2896789611 hasAuthorship W2896789611A5037145063 @default.
- W2896789611 hasAuthorship W2896789611A5062627891 @default.
- W2896789611 hasBestOaLocation W28967896112 @default.
- W2896789611 hasConcept C110729354 @default.
- W2896789611 hasConcept C118615104 @default.
- W2896789611 hasConcept C134306372 @default.
- W2896789611 hasConcept C142399903 @default.
- W2896789611 hasConcept C147358099 @default.
- W2896789611 hasConcept C153046414 @default.
- W2896789611 hasConcept C154945302 @default.
- W2896789611 hasConcept C167729594 @default.
- W2896789611 hasConcept C17231256 @default.
- W2896789611 hasConcept C177264268 @default.
- W2896789611 hasConcept C180937797 @default.
- W2896789611 hasConcept C199360897 @default.
- W2896789611 hasConcept C2524010 @default.
- W2896789611 hasConcept C2781302003 @default.
- W2896789611 hasConcept C33923547 @default.
- W2896789611 hasConcept C41008148 @default.
- W2896789611 hasConcept C96488702 @default.
- W2896789611 hasConcept C97489613 @default.
- W2896789611 hasConceptScore W2896789611C110729354 @default.
- W2896789611 hasConceptScore W2896789611C118615104 @default.
- W2896789611 hasConceptScore W2896789611C134306372 @default.
- W2896789611 hasConceptScore W2896789611C142399903 @default.
- W2896789611 hasConceptScore W2896789611C147358099 @default.
- W2896789611 hasConceptScore W2896789611C153046414 @default.
- W2896789611 hasConceptScore W2896789611C154945302 @default.
- W2896789611 hasConceptScore W2896789611C167729594 @default.
- W2896789611 hasConceptScore W2896789611C17231256 @default.
- W2896789611 hasConceptScore W2896789611C177264268 @default.
- W2896789611 hasConceptScore W2896789611C180937797 @default.
- W2896789611 hasConceptScore W2896789611C199360897 @default.
- W2896789611 hasConceptScore W2896789611C2524010 @default.
- W2896789611 hasConceptScore W2896789611C2781302003 @default.
- W2896789611 hasConceptScore W2896789611C33923547 @default.
- W2896789611 hasConceptScore W2896789611C41008148 @default.
- W2896789611 hasConceptScore W2896789611C96488702 @default.
- W2896789611 hasConceptScore W2896789611C97489613 @default.
- W2896789611 hasLocation W28967896111 @default.
- W2896789611 hasLocation W28967896112 @default.
- W2896789611 hasLocation W28967896113 @default.
- W2896789611 hasLocation W28967896114 @default.
- W2896789611 hasOpenAccess W2896789611 @default.
- W2896789611 hasPrimaryLocation W28967896111 @default.
- W2896789611 hasRelatedWork W1749368897 @default.
- W2896789611 hasRelatedWork W1985784884 @default.
- W2896789611 hasRelatedWork W1989130402 @default.
- W2896789611 hasRelatedWork W2007017681 @default.
- W2896789611 hasRelatedWork W2026878550 @default.
- W2896789611 hasRelatedWork W2033883636 @default.
- W2896789611 hasRelatedWork W2131400594 @default.
- W2896789611 hasRelatedWork W2151715640 @default.
- W2896789611 hasRelatedWork W2258706917 @default.