Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896790556> ?p ?o ?g. }
- W2896790556 endingPage "123" @default.
- W2896790556 startingPage "123" @default.
- W2896790556 abstract "Watershed is a widespread technique for image segmentation. Many researchers apply the method implemented in open source libraries without a deep understanding of its characteristics and limitations. In the review, we describe benchmarking outcomes of six open-source marker-controlled watershed implementations for the segmentation of 2D and 3D images. Even though the considered solutions are based on the same algorithm by flooding having O(n)computational complexity, these implementations have significantly different performance. In addition, building of watershed lines grows processing time. High memory consumption is one more bottleneck for dealing with huge volumetric images. Sometimes, the usage of more optimal software is capable of mitigating the issues with the long processing time and insufficient memory space. We assume parallel processing is capable of overcoming the current limitations. However, the development of concurrent approaches for the watershed segmentation remains a challenging problem." @default.
- W2896790556 created "2018-10-26" @default.
- W2896790556 creator A5010641205 @default.
- W2896790556 creator A5033162542 @default.
- W2896790556 date "2018-10-20" @default.
- W2896790556 modified "2023-10-03" @default.
- W2896790556 title "An Overview of Watershed Algorithm Implementations in Open Source Libraries" @default.
- W2896790556 cites W1631536131 @default.
- W2896790556 cites W1652775531 @default.
- W2896790556 cites W1837636523 @default.
- W2896790556 cites W1969580165 @default.
- W2896790556 cites W1993267702 @default.
- W2896790556 cites W2015159529 @default.
- W2896790556 cites W2016539608 @default.
- W2896790556 cites W2019553201 @default.
- W2896790556 cites W2025818287 @default.
- W2896790556 cites W2034095191 @default.
- W2896790556 cites W2047984214 @default.
- W2896790556 cites W2052824170 @default.
- W2896790556 cites W2056545258 @default.
- W2896790556 cites W2063125200 @default.
- W2896790556 cites W2082250849 @default.
- W2896790556 cites W2093726900 @default.
- W2896790556 cites W2094887943 @default.
- W2896790556 cites W2113065661 @default.
- W2896790556 cites W2118386984 @default.
- W2896790556 cites W2119379074 @default.
- W2896790556 cites W2122154258 @default.
- W2896790556 cites W2124260943 @default.
- W2896790556 cites W2131006320 @default.
- W2896790556 cites W2138197318 @default.
- W2896790556 cites W2168992062 @default.
- W2896790556 cites W2467628122 @default.
- W2896790556 cites W2498147368 @default.
- W2896790556 cites W2532189199 @default.
- W2896790556 cites W2548555170 @default.
- W2896790556 cites W2560321630 @default.
- W2896790556 cites W2580035316 @default.
- W2896790556 cites W2617126609 @default.
- W2896790556 cites W2749066189 @default.
- W2896790556 cites W2758766316 @default.
- W2896790556 cites W3103016133 @default.
- W2896790556 doi "https://doi.org/10.3390/jimaging4100123" @default.
- W2896790556 hasPublicationYear "2018" @default.
- W2896790556 type Work @default.
- W2896790556 sameAs 2896790556 @default.
- W2896790556 citedByCount "119" @default.
- W2896790556 countsByYear W28967905562018 @default.
- W2896790556 countsByYear W28967905562019 @default.
- W2896790556 countsByYear W28967905562020 @default.
- W2896790556 countsByYear W28967905562021 @default.
- W2896790556 countsByYear W28967905562022 @default.
- W2896790556 countsByYear W28967905562023 @default.
- W2896790556 crossrefType "journal-article" @default.
- W2896790556 hasAuthorship W2896790556A5010641205 @default.
- W2896790556 hasAuthorship W2896790556A5033162542 @default.
- W2896790556 hasBestOaLocation W28967905561 @default.
- W2896790556 hasConcept C113775141 @default.
- W2896790556 hasConcept C11413529 @default.
- W2896790556 hasConcept C115903868 @default.
- W2896790556 hasConcept C115961682 @default.
- W2896790556 hasConcept C119857082 @default.
- W2896790556 hasConcept C124101348 @default.
- W2896790556 hasConcept C124504099 @default.
- W2896790556 hasConcept C144133560 @default.
- W2896790556 hasConcept C149635348 @default.
- W2896790556 hasConcept C150547873 @default.
- W2896790556 hasConcept C154945302 @default.
- W2896790556 hasConcept C15744967 @default.
- W2896790556 hasConcept C162853370 @default.
- W2896790556 hasConcept C186594467 @default.
- W2896790556 hasConcept C199360897 @default.
- W2896790556 hasConcept C26713055 @default.
- W2896790556 hasConcept C2777904410 @default.
- W2896790556 hasConcept C2780513914 @default.
- W2896790556 hasConcept C41008148 @default.
- W2896790556 hasConcept C542102704 @default.
- W2896790556 hasConcept C86251818 @default.
- W2896790556 hasConcept C89600930 @default.
- W2896790556 hasConcept C9417928 @default.
- W2896790556 hasConceptScore W2896790556C113775141 @default.
- W2896790556 hasConceptScore W2896790556C11413529 @default.
- W2896790556 hasConceptScore W2896790556C115903868 @default.
- W2896790556 hasConceptScore W2896790556C115961682 @default.
- W2896790556 hasConceptScore W2896790556C119857082 @default.
- W2896790556 hasConceptScore W2896790556C124101348 @default.
- W2896790556 hasConceptScore W2896790556C124504099 @default.
- W2896790556 hasConceptScore W2896790556C144133560 @default.
- W2896790556 hasConceptScore W2896790556C149635348 @default.
- W2896790556 hasConceptScore W2896790556C150547873 @default.
- W2896790556 hasConceptScore W2896790556C154945302 @default.
- W2896790556 hasConceptScore W2896790556C15744967 @default.
- W2896790556 hasConceptScore W2896790556C162853370 @default.
- W2896790556 hasConceptScore W2896790556C186594467 @default.
- W2896790556 hasConceptScore W2896790556C199360897 @default.
- W2896790556 hasConceptScore W2896790556C26713055 @default.
- W2896790556 hasConceptScore W2896790556C2777904410 @default.
- W2896790556 hasConceptScore W2896790556C2780513914 @default.