Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896792906> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W2896792906 abstract "Fog Computing has in recent times captured the imagination of industrial and research organizations working on various aspects of connected livelihood and governance of smart cities. Improvements in deep neural networks imply extensive use of such models for analytics and inferencing on large volume of data, including sensor observations, images, speech. A growing need for such inferencing to be run on devices closer to the data sources, i.e. devices which reside at the edge of the network, popularly known as fog devices exists, in order to reduce the upstream network traffic. However, being computationally constrained in nature, executing complex deep inferencing models on such devices has been proved difficult. This has led to several new approaches to partition/distribute the computation and/or data over multiple fog devices. In this paper we propose a novel depth-wise input partitioning scheme for CNN models and experimentally prove that it achieves better performance compared to row/column or grid based schemes." @default.
- W2896792906 created "2018-10-26" @default.
- W2896792906 creator A5015757476 @default.
- W2896792906 creator A5026103583 @default.
- W2896792906 creator A5031139197 @default.
- W2896792906 creator A5072563444 @default.
- W2896792906 date "2018-11-04" @default.
- W2896792906 modified "2023-09-25" @default.
- W2896792906 title "Partitioning of CNN Models for Execution on Fog Devices" @default.
- W2896792906 cites W1972542061 @default.
- W2896792906 cites W2042891189 @default.
- W2896792906 cites W2117539524 @default.
- W2896792906 cites W2297325673 @default.
- W2896792906 cites W2568772110 @default.
- W2896792906 cites W2765234087 @default.
- W2896792906 cites W2770146469 @default.
- W2896792906 cites W2808064527 @default.
- W2896792906 cites W2809251854 @default.
- W2896792906 cites W2811287767 @default.
- W2896792906 doi "https://doi.org/10.1145/3277893.3277899" @default.
- W2896792906 hasPublicationYear "2018" @default.
- W2896792906 type Work @default.
- W2896792906 sameAs 2896792906 @default.
- W2896792906 citedByCount "18" @default.
- W2896792906 countsByYear W28967929062019 @default.
- W2896792906 countsByYear W28967929062020 @default.
- W2896792906 countsByYear W28967929062021 @default.
- W2896792906 countsByYear W28967929062022 @default.
- W2896792906 countsByYear W28967929062023 @default.
- W2896792906 crossrefType "proceedings-article" @default.
- W2896792906 hasAuthorship W2896792906A5015757476 @default.
- W2896792906 hasAuthorship W2896792906A5026103583 @default.
- W2896792906 hasAuthorship W2896792906A5031139197 @default.
- W2896792906 hasAuthorship W2896792906A5072563444 @default.
- W2896792906 hasConcept C173608175 @default.
- W2896792906 hasConcept C41008148 @default.
- W2896792906 hasConceptScore W2896792906C173608175 @default.
- W2896792906 hasConceptScore W2896792906C41008148 @default.
- W2896792906 hasLocation W28967929061 @default.
- W2896792906 hasOpenAccess W2896792906 @default.
- W2896792906 hasPrimaryLocation W28967929061 @default.
- W2896792906 hasRelatedWork W1491899005 @default.
- W2896792906 hasRelatedWork W1502414128 @default.
- W2896792906 hasRelatedWork W1558545464 @default.
- W2896792906 hasRelatedWork W1604898313 @default.
- W2896792906 hasRelatedWork W1984303163 @default.
- W2896792906 hasRelatedWork W2074301136 @default.
- W2896792906 hasRelatedWork W2117014006 @default.
- W2896792906 hasRelatedWork W2172791042 @default.
- W2896792906 hasRelatedWork W2372170743 @default.
- W2896792906 hasRelatedWork W4233815414 @default.
- W2896792906 isParatext "false" @default.
- W2896792906 isRetracted "false" @default.
- W2896792906 magId "2896792906" @default.
- W2896792906 workType "article" @default.