Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896797790> ?p ?o ?g. }
- W2896797790 endingPage "1564" @default.
- W2896797790 startingPage "1552" @default.
- W2896797790 abstract "Accurate segmentation of pelvic organs is important for prostate radiation therapy. Modern radiation therapy starts to use a magnetic resonance image (MRI) as an alternative to computed tomography image because of its superior soft tissue contrast and also free of risk from radiation exposure. However, segmentation of pelvic organs from MRI is a challenging problem due to inconsistent organ appearance across patients and also large intrapatient anatomical variations across treatment days. To address such challenges, we propose a novel deep network architecture, called Spatially varying sTochastic Residual AdversarIal Network (STRAINet), to delineate pelvic organs from MRI in an end-to-end fashion. Compared to the traditional fully convolutional networks (FCN), the proposed architecture has two main contributions: 1) inspired by the recent success of residual learning, we propose an evolutionary version of the residual unit, i.e., stochastic residual unit, and use it to the plain convolutional layers in the FCN. We further propose long-range stochastic residual connections to pass features from shallow layers to deep layers; and 2) we propose to integrate three previously proposed network strategies to form a new network for better medical image segmentation: a) we apply dilated convolution in the smallest resolution feature maps, so that we can gain a larger receptive field without overly losing spatial information; b) we propose a spatially varying convolutional layer that adapts convolutional filters to different regions of interest; and c) an adversarial network is proposed to further correct the segmented organ structures. Finally, STRAINet is used to iteratively refine the segmentation probability maps in an autocontext manner. Experimental results show that our STRAINet achieved the state-of-the-art segmentation accuracy. Further analysis also indicates that our proposed network components contribute most to the performance." @default.
- W2896797790 created "2018-10-26" @default.
- W2896797790 creator A5000937401 @default.
- W2896797790 creator A5054666507 @default.
- W2896797790 creator A5064564558 @default.
- W2896797790 creator A5073223909 @default.
- W2896797790 creator A5075338951 @default.
- W2896797790 date "2019-05-01" @default.
- W2896797790 modified "2023-10-13" @default.
- W2896797790 title "STRAINet: Spatially Varying sTochastic Residual AdversarIal Networks for MRI Pelvic Organ Segmentation" @default.
- W2896797790 cites W1608700414 @default.
- W2896797790 cites W1903029394 @default.
- W2896797790 cites W1980913318 @default.
- W2896797790 cites W1992996001 @default.
- W2896797790 cites W2052617496 @default.
- W2896797790 cites W2056926361 @default.
- W2896797790 cites W2070209883 @default.
- W2896797790 cites W2088776202 @default.
- W2896797790 cites W2106033751 @default.
- W2896797790 cites W2107634464 @default.
- W2896797790 cites W2129259959 @default.
- W2896797790 cites W2145287260 @default.
- W2896797790 cites W2194775991 @default.
- W2896797790 cites W2211483859 @default.
- W2896797790 cites W2242218935 @default.
- W2896797790 cites W2295850614 @default.
- W2896797790 cites W2301358467 @default.
- W2896797790 cites W2323200062 @default.
- W2896797790 cites W2331143823 @default.
- W2896797790 cites W2395611524 @default.
- W2896797790 cites W2412782625 @default.
- W2896797790 cites W2422365436 @default.
- W2896797790 cites W2441649867 @default.
- W2896797790 cites W2518297742 @default.
- W2896797790 cites W2533800772 @default.
- W2896797790 cites W2560023338 @default.
- W2896797790 cites W2563705555 @default.
- W2896797790 cites W2567079332 @default.
- W2896797790 cites W2604785265 @default.
- W2896797790 cites W2735429996 @default.
- W2896797790 cites W2753514108 @default.
- W2896797790 cites W2768673271 @default.
- W2896797790 cites W2789713147 @default.
- W2896797790 cites W2791155853 @default.
- W2896797790 cites W2793404847 @default.
- W2896797790 cites W2919115771 @default.
- W2896797790 cites W2962914239 @default.
- W2896797790 cites W2963881378 @default.
- W2896797790 cites W2963951674 @default.
- W2896797790 cites W66531091 @default.
- W2896797790 doi "https://doi.org/10.1109/tnnls.2018.2870182" @default.
- W2896797790 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6550324" @default.
- W2896797790 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30307879" @default.
- W2896797790 hasPublicationYear "2019" @default.
- W2896797790 type Work @default.
- W2896797790 sameAs 2896797790 @default.
- W2896797790 citedByCount "45" @default.
- W2896797790 countsByYear W28967977902019 @default.
- W2896797790 countsByYear W28967977902020 @default.
- W2896797790 countsByYear W28967977902021 @default.
- W2896797790 countsByYear W28967977902022 @default.
- W2896797790 countsByYear W28967977902023 @default.
- W2896797790 crossrefType "journal-article" @default.
- W2896797790 hasAuthorship W2896797790A5000937401 @default.
- W2896797790 hasAuthorship W2896797790A5054666507 @default.
- W2896797790 hasAuthorship W2896797790A5064564558 @default.
- W2896797790 hasAuthorship W2896797790A5073223909 @default.
- W2896797790 hasAuthorship W2896797790A5075338951 @default.
- W2896797790 hasBestOaLocation W28967977902 @default.
- W2896797790 hasConcept C108583219 @default.
- W2896797790 hasConcept C11413529 @default.
- W2896797790 hasConcept C124504099 @default.
- W2896797790 hasConcept C138885662 @default.
- W2896797790 hasConcept C153180895 @default.
- W2896797790 hasConcept C154945302 @default.
- W2896797790 hasConcept C155512373 @default.
- W2896797790 hasConcept C2776401178 @default.
- W2896797790 hasConcept C31972630 @default.
- W2896797790 hasConcept C41008148 @default.
- W2896797790 hasConcept C41895202 @default.
- W2896797790 hasConcept C45347329 @default.
- W2896797790 hasConcept C50644808 @default.
- W2896797790 hasConcept C81363708 @default.
- W2896797790 hasConcept C89600930 @default.
- W2896797790 hasConceptScore W2896797790C108583219 @default.
- W2896797790 hasConceptScore W2896797790C11413529 @default.
- W2896797790 hasConceptScore W2896797790C124504099 @default.
- W2896797790 hasConceptScore W2896797790C138885662 @default.
- W2896797790 hasConceptScore W2896797790C153180895 @default.
- W2896797790 hasConceptScore W2896797790C154945302 @default.
- W2896797790 hasConceptScore W2896797790C155512373 @default.
- W2896797790 hasConceptScore W2896797790C2776401178 @default.
- W2896797790 hasConceptScore W2896797790C31972630 @default.
- W2896797790 hasConceptScore W2896797790C41008148 @default.
- W2896797790 hasConceptScore W2896797790C41895202 @default.
- W2896797790 hasConceptScore W2896797790C45347329 @default.
- W2896797790 hasConceptScore W2896797790C50644808 @default.
- W2896797790 hasConceptScore W2896797790C81363708 @default.