Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896817368> ?p ?o ?g. }
- W2896817368 abstract "Machine-learning techniques are evolving into a subsidiary tool for studying phase transitions in many-body systems. However, most studies are tied to situations involving only one phase transition and one order parameter. Systems that accommodate multiple phases of coexisting and competing orders, which are common in condensed matter physics, remain largely unexplored from a machine-learning perspective. In this paper, we investigate multiclassification of phases using support vector machines (SVMs) and apply a recently introduced kernel method for detecting hidden spin and orbital orders to learn multiple phases and their analytical order parameters. Our focus is on multipolar orders and their tensorial order parameters whose identification is difficult with traditional methods. The importance of interpretability is emphasized for physical applications of multiclassification. Furthermore, we discuss an intrinsic parameter of SVM, the bias, which allows for a special interpretation in the classification of phases, and its utility in diagnosing the existence of phase transitions. We show that it can be exploited as an efficient way to explore the topology of unknown phase diagrams where the supervision is entirely delegated to the machine." @default.
- W2896817368 created "2018-10-26" @default.
- W2896817368 creator A5001707504 @default.
- W2896817368 creator A5063679827 @default.
- W2896817368 creator A5071684320 @default.
- W2896817368 date "2019-03-08" @default.
- W2896817368 modified "2023-10-14" @default.
- W2896817368 title "Learning multiple order parameters with interpretable machines" @default.
- W2896817368 cites W1543738661 @default.
- W2896817368 cites W1553589369 @default.
- W2896817368 cites W1970215649 @default.
- W2896817368 cites W1985331747 @default.
- W2896817368 cites W1986405583 @default.
- W2896817368 cites W2002204256 @default.
- W2896817368 cites W2020029791 @default.
- W2896817368 cites W2024511231 @default.
- W2896817368 cites W2026496277 @default.
- W2896817368 cites W2036350498 @default.
- W2896817368 cites W2048040042 @default.
- W2896817368 cites W2057237662 @default.
- W2896817368 cites W2066196783 @default.
- W2896817368 cites W2067006593 @default.
- W2896817368 cites W2067726299 @default.
- W2896817368 cites W2099666213 @default.
- W2896817368 cites W2104549471 @default.
- W2896817368 cites W2110990313 @default.
- W2896817368 cites W2124583192 @default.
- W2896817368 cites W2153635508 @default.
- W2896817368 cites W2161920802 @default.
- W2896817368 cites W2213115755 @default.
- W2896817368 cites W2236240405 @default.
- W2896817368 cites W2265126976 @default.
- W2896817368 cites W2301211504 @default.
- W2896817368 cites W2337082154 @default.
- W2896817368 cites W2414456771 @default.
- W2896817368 cites W2438225984 @default.
- W2896817368 cites W2516533688 @default.
- W2896817368 cites W2520689375 @default.
- W2896817368 cites W2531147647 @default.
- W2896817368 cites W2608461474 @default.
- W2896817368 cites W2745533326 @default.
- W2896817368 cites W2765597272 @default.
- W2896817368 cites W2789149195 @default.
- W2896817368 cites W2798368581 @default.
- W2896817368 cites W2799261665 @default.
- W2896817368 cites W2963825186 @default.
- W2896817368 cites W3104239185 @default.
- W2896817368 cites W3123130211 @default.
- W2896817368 cites W4232543112 @default.
- W2896817368 cites W4239510810 @default.
- W2896817368 doi "https://doi.org/10.1103/physrevb.99.104410" @default.
- W2896817368 hasPublicationYear "2019" @default.
- W2896817368 type Work @default.
- W2896817368 sameAs 2896817368 @default.
- W2896817368 citedByCount "40" @default.
- W2896817368 countsByYear W28968173682019 @default.
- W2896817368 countsByYear W28968173682020 @default.
- W2896817368 countsByYear W28968173682021 @default.
- W2896817368 countsByYear W28968173682022 @default.
- W2896817368 countsByYear W28968173682023 @default.
- W2896817368 crossrefType "journal-article" @default.
- W2896817368 hasAuthorship W2896817368A5001707504 @default.
- W2896817368 hasAuthorship W2896817368A5063679827 @default.
- W2896817368 hasAuthorship W2896817368A5071684320 @default.
- W2896817368 hasBestOaLocation W28968173682 @default.
- W2896817368 hasConcept C114614502 @default.
- W2896817368 hasConcept C116834253 @default.
- W2896817368 hasConcept C119857082 @default.
- W2896817368 hasConcept C120665830 @default.
- W2896817368 hasConcept C121332964 @default.
- W2896817368 hasConcept C121864883 @default.
- W2896817368 hasConcept C12267149 @default.
- W2896817368 hasConcept C12713177 @default.
- W2896817368 hasConcept C154945302 @default.
- W2896817368 hasConcept C184720557 @default.
- W2896817368 hasConcept C192209626 @default.
- W2896817368 hasConcept C199360897 @default.
- W2896817368 hasConcept C2781067378 @default.
- W2896817368 hasConcept C33923547 @default.
- W2896817368 hasConcept C41008148 @default.
- W2896817368 hasConcept C44280652 @default.
- W2896817368 hasConcept C527412718 @default.
- W2896817368 hasConcept C59822182 @default.
- W2896817368 hasConcept C62520636 @default.
- W2896817368 hasConcept C86803240 @default.
- W2896817368 hasConceptScore W2896817368C114614502 @default.
- W2896817368 hasConceptScore W2896817368C116834253 @default.
- W2896817368 hasConceptScore W2896817368C119857082 @default.
- W2896817368 hasConceptScore W2896817368C120665830 @default.
- W2896817368 hasConceptScore W2896817368C121332964 @default.
- W2896817368 hasConceptScore W2896817368C121864883 @default.
- W2896817368 hasConceptScore W2896817368C12267149 @default.
- W2896817368 hasConceptScore W2896817368C12713177 @default.
- W2896817368 hasConceptScore W2896817368C154945302 @default.
- W2896817368 hasConceptScore W2896817368C184720557 @default.
- W2896817368 hasConceptScore W2896817368C192209626 @default.
- W2896817368 hasConceptScore W2896817368C199360897 @default.
- W2896817368 hasConceptScore W2896817368C2781067378 @default.
- W2896817368 hasConceptScore W2896817368C33923547 @default.
- W2896817368 hasConceptScore W2896817368C41008148 @default.