Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896817483> ?p ?o ?g. }
- W2896817483 endingPage "2396" @default.
- W2896817483 startingPage "2388" @default.
- W2896817483 abstract "Non-contrast head CT scan is the current standard for initial imaging of patients with head trauma or stroke symptoms. We aimed to develop and validate a set of deep learning algorithms for automated detection of the following key findings from these scans: intracranial haemorrhage and its types (ie, intraparenchymal, intraventricular, subdural, extradural, and subarachnoid); calvarial fractures; midline shift; and mass effect.We retrospectively collected a dataset containing 313 318 head CT scans together with their clinical reports from around 20 centres in India between Jan 1, 2011, and June 1, 2017. A randomly selected part of this dataset (Qure25k dataset) was used for validation and the rest was used to develop algorithms. An additional validation dataset (CQ500 dataset) was collected in two batches from centres that were different from those used for the development and Qure25k datasets. We excluded postoperative scans and scans of patients younger than 7 years. The original clinical radiology report and consensus of three independent radiologists were considered as gold standard for the Qure25k and CQ500 datasets, respectively. Areas under the receiver operating characteristic curves (AUCs) were primarily used to assess the algorithms.The Qure25k dataset contained 21 095 scans (mean age 43 years; 9030 [43%] female patients), and the CQ500 dataset consisted of 214 scans in the first batch (mean age 43 years; 94 [44%] female patients) and 277 scans in the second batch (mean age 52 years; 84 [30%] female patients). On the Qure25k dataset, the algorithms achieved an AUC of 0·92 (95% CI 0·91-0·93) for detecting intracranial haemorrhage (0·90 [0·89-0·91] for intraparenchymal, 0·96 [0·94-0·97] for intraventricular, 0·92 [0·90-0·93] for subdural, 0·93 [0·91-0·95] for extradural, and 0·90 [0·89-0·92] for subarachnoid). On the CQ500 dataset, AUC was 0·94 (0·92-0·97) for intracranial haemorrhage (0·95 [0·93-0·98], 0·93 [0·87-1·00], 0·95 [0·91-0·99], 0·97 [0·91-1·00], and 0·96 [0·92-0·99], respectively). AUCs on the Qure25k dataset were 0·92 (0·91-0·94) for calvarial fractures, 0·93 (0·91-0·94) for midline shift, and 0·86 (0·85-0·87) for mass effect, while AUCs on the CQ500 dataset were 0·96 (0·92-1·00), 0·97 (0·94-1·00), and 0·92 (0·89-0·95), respectively.Our results show that deep learning algorithms can accurately identify head CT scan abnormalities requiring urgent attention, opening up the possibility to use these algorithms to automate the triage process.Qure.ai." @default.
- W2896817483 created "2018-10-26" @default.
- W2896817483 creator A5008877871 @default.
- W2896817483 creator A5009086579 @default.
- W2896817483 creator A5019596851 @default.
- W2896817483 creator A5036644592 @default.
- W2896817483 creator A5060872958 @default.
- W2896817483 creator A5075181719 @default.
- W2896817483 creator A5078580503 @default.
- W2896817483 creator A5086342400 @default.
- W2896817483 creator A5091294828 @default.
- W2896817483 date "2018-12-01" @default.
- W2896817483 modified "2023-10-18" @default.
- W2896817483 title "Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study" @default.
- W2896817483 cites W1600253084 @default.
- W2896817483 cites W1975879668 @default.
- W2896817483 cites W1986649315 @default.
- W2896817483 cites W2011810280 @default.
- W2896817483 cites W2057753761 @default.
- W2896817483 cites W2103018059 @default.
- W2896817483 cites W2111812596 @default.
- W2896817483 cites W2137591261 @default.
- W2896817483 cites W2147343097 @default.
- W2896817483 cites W2157825442 @default.
- W2896817483 cites W2323929895 @default.
- W2896817483 cites W2341106171 @default.
- W2896817483 cites W2534299759 @default.
- W2896817483 cites W2557738935 @default.
- W2896817483 cites W2581082771 @default.
- W2896817483 cites W2592929672 @default.
- W2896817483 cites W2725984455 @default.
- W2896817483 cites W3101156210 @default.
- W2896817483 cites W4255683973 @default.
- W2896817483 doi "https://doi.org/10.1016/s0140-6736(18)31645-3" @default.
- W2896817483 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30318264" @default.
- W2896817483 hasPublicationYear "2018" @default.
- W2896817483 type Work @default.
- W2896817483 sameAs 2896817483 @default.
- W2896817483 citedByCount "548" @default.
- W2896817483 countsByYear W28968174832018 @default.
- W2896817483 countsByYear W28968174832019 @default.
- W2896817483 countsByYear W28968174832020 @default.
- W2896817483 countsByYear W28968174832021 @default.
- W2896817483 countsByYear W28968174832022 @default.
- W2896817483 countsByYear W28968174832023 @default.
- W2896817483 crossrefType "journal-article" @default.
- W2896817483 hasAuthorship W2896817483A5008877871 @default.
- W2896817483 hasAuthorship W2896817483A5009086579 @default.
- W2896817483 hasAuthorship W2896817483A5019596851 @default.
- W2896817483 hasAuthorship W2896817483A5036644592 @default.
- W2896817483 hasAuthorship W2896817483A5060872958 @default.
- W2896817483 hasAuthorship W2896817483A5075181719 @default.
- W2896817483 hasAuthorship W2896817483A5078580503 @default.
- W2896817483 hasAuthorship W2896817483A5086342400 @default.
- W2896817483 hasAuthorship W2896817483A5091294828 @default.
- W2896817483 hasConcept C11413529 @default.
- W2896817483 hasConcept C126322002 @default.
- W2896817483 hasConcept C126838900 @default.
- W2896817483 hasConcept C141071460 @default.
- W2896817483 hasConcept C154945302 @default.
- W2896817483 hasConcept C167135981 @default.
- W2896817483 hasConcept C2989005 @default.
- W2896817483 hasConcept C3019520628 @default.
- W2896817483 hasConcept C40993552 @default.
- W2896817483 hasConcept C41008148 @default.
- W2896817483 hasConcept C544519230 @default.
- W2896817483 hasConcept C58471807 @default.
- W2896817483 hasConcept C71924100 @default.
- W2896817483 hasConceptScore W2896817483C11413529 @default.
- W2896817483 hasConceptScore W2896817483C126322002 @default.
- W2896817483 hasConceptScore W2896817483C126838900 @default.
- W2896817483 hasConceptScore W2896817483C141071460 @default.
- W2896817483 hasConceptScore W2896817483C154945302 @default.
- W2896817483 hasConceptScore W2896817483C167135981 @default.
- W2896817483 hasConceptScore W2896817483C2989005 @default.
- W2896817483 hasConceptScore W2896817483C3019520628 @default.
- W2896817483 hasConceptScore W2896817483C40993552 @default.
- W2896817483 hasConceptScore W2896817483C41008148 @default.
- W2896817483 hasConceptScore W2896817483C544519230 @default.
- W2896817483 hasConceptScore W2896817483C58471807 @default.
- W2896817483 hasConceptScore W2896817483C71924100 @default.
- W2896817483 hasIssue "10162" @default.
- W2896817483 hasLocation W28968174831 @default.
- W2896817483 hasLocation W28968174832 @default.
- W2896817483 hasOpenAccess W2896817483 @default.
- W2896817483 hasPrimaryLocation W28968174831 @default.
- W2896817483 hasRelatedWork W1523107736 @default.
- W2896817483 hasRelatedWork W2049214470 @default.
- W2896817483 hasRelatedWork W2050560466 @default.
- W2896817483 hasRelatedWork W2105151527 @default.
- W2896817483 hasRelatedWork W2902148150 @default.
- W2896817483 hasRelatedWork W3009852707 @default.
- W2896817483 hasRelatedWork W3013145321 @default.
- W2896817483 hasRelatedWork W3208090289 @default.
- W2896817483 hasRelatedWork W3210359220 @default.
- W2896817483 hasRelatedWork W4255376461 @default.
- W2896817483 hasVolume "392" @default.
- W2896817483 isParatext "false" @default.