Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896838311> ?p ?o ?g. }
- W2896838311 abstract "Entropies have been immensely useful in information theory. In this Thesis, several results in quantuminformation theory are collected, most of which use entropy as the main mathematical tool.The first one concerns the von Neumann entropy. While a direct generalization of the Shannon entropyto density matrices, the von Neumann entropy behaves differently. The latter does not, for example, havethe monotonicity property that the latter possesses: When adding another quantum system, the entropycan decrease. A long-standing open question is, whether there are quantum analogues of unconstrainednon-Shannon type inequalities. Here, a new constrained non-von-Neumann type inequality is proven, astep towards a conjectured unconstrained inequality by Linden and Winter.Like many other information-theoretic tasks, quantum source coding problems such as coherent statemerging have recently been analyzed in the one-shot setting. While the case of many independent,identically distributed quantum states has been treated using the decoupling technique, the essentiallyoptimal one-shot results in terms of the max-mutual information by Berta et al. and Anshu at al. had tobring in additional mathematical machinery. We introduce a natural generalized decoupling paradigm,catalytic decoupling, that can reproduce the aforementioned results when applied in a manner analogousto the application of standard decoupling in the asymptotic case.Quantum teleportation is one of the most basic building blocks in quantum Shannon theory. Whileimmensely more entanglement-consuming, the variant of port based teleportation is interesting for appli-cations like instantaneous non-local computation and attacks on quantum position-based cryptography.Port based teleportation cannot be implemented perfectly, and the resource requirements diverge forvanishing error. We prove several lower bounds on the necessary number of output portsNto achieveport based teleportation for given dimension and error. One of them shows for the first time thatNdiverges uniformly in the dimension of the teleported quantum system, for vanishing error. As a byprod-uct, a new lower bound for the size of the program register for an approximate universal programmablequantum processor is derived.Finally, the mix is completed with a result in quantum cryptography. While quantum key distributionis the most well-known quantum cryptographic protocol, there has been increased interest in extendingthe framework of symmetric key cryptography to quantum messages. We give a new definition forinformation-theoretic quantum non-malleability, strengthening the previous definition by Ambainis etal. We show that quantum non-malleability implies secrecy, analogous to quantum authentication.Furthermore, non-malleable encryption schemes can be used as a primitive to build authenticatingencryption schemes. We also show that the strong notion of authentication recently proposed by Garget al. can be fulfilled using 2-designs." @default.
- W2896838311 created "2018-10-26" @default.
- W2896838311 creator A5084799117 @default.
- W2896838311 date "2018-10-01" @default.
- W2896838311 modified "2023-09-27" @default.
- W2896838311 title "Entropy in Quantum Information Theory -- Communication and Cryptography" @default.
- W2896838311 cites W108696806 @default.
- W2896838311 cites W1258980855 @default.
- W2896838311 cites W1546761470 @default.
- W2896838311 cites W1559604118 @default.
- W2896838311 cites W1631356911 @default.
- W2896838311 cites W1754755491 @default.
- W2896838311 cites W1968293918 @default.
- W2896838311 cites W1970986702 @default.
- W2896838311 cites W1971585707 @default.
- W2896838311 cites W1976865215 @default.
- W2896838311 cites W1978269114 @default.
- W2896838311 cites W1978553093 @default.
- W2896838311 cites W1989397443 @default.
- W2896838311 cites W1995875735 @default.
- W2896838311 cites W2000493582 @default.
- W2896838311 cites W2007737215 @default.
- W2896838311 cites W2010138343 @default.
- W2896838311 cites W2020582875 @default.
- W2896838311 cites W2020725861 @default.
- W2896838311 cites W2033720918 @default.
- W2896838311 cites W2033934891 @default.
- W2896838311 cites W2037772232 @default.
- W2896838311 cites W2040362900 @default.
- W2896838311 cites W2043491679 @default.
- W2896838311 cites W2045436532 @default.
- W2896838311 cites W2052146120 @default.
- W2896838311 cites W2071968733 @default.
- W2896838311 cites W2077242588 @default.
- W2896838311 cites W2079145130 @default.
- W2896838311 cites W2081349667 @default.
- W2896838311 cites W2103286274 @default.
- W2896838311 cites W2105918132 @default.
- W2896838311 cites W2106654982 @default.
- W2896838311 cites W2112065886 @default.
- W2896838311 cites W2113940092 @default.
- W2896838311 cites W2137117738 @default.
- W2896838311 cites W2140678653 @default.
- W2896838311 cites W2146720213 @default.
- W2896838311 cites W2149617935 @default.
- W2896838311 cites W2154588779 @default.
- W2896838311 cites W2159023941 @default.
- W2896838311 cites W2160860151 @default.
- W2896838311 cites W2164253138 @default.
- W2896838311 cites W2166302514 @default.
- W2896838311 cites W2346973747 @default.
- W2896838311 cites W245337057 @default.
- W2896838311 cites W2524151044 @default.
- W2896838311 cites W2899153308 @default.
- W2896838311 cites W2951334183 @default.
- W2896838311 cites W2962915432 @default.
- W2896838311 cites W2964155432 @default.
- W2896838311 cites W3105857502 @default.
- W2896838311 cites W3105977417 @default.
- W2896838311 hasPublicationYear "2018" @default.
- W2896838311 type Work @default.
- W2896838311 sameAs 2896838311 @default.
- W2896838311 citedByCount "0" @default.
- W2896838311 crossrefType "posted-content" @default.
- W2896838311 hasAuthorship W2896838311A5084799117 @default.
- W2896838311 hasConcept C101973423 @default.
- W2896838311 hasConcept C105795698 @default.
- W2896838311 hasConcept C106301342 @default.
- W2896838311 hasConcept C121040770 @default.
- W2896838311 hasConcept C121332964 @default.
- W2896838311 hasConcept C139356082 @default.
- W2896838311 hasConcept C144901912 @default.
- W2896838311 hasConcept C152139883 @default.
- W2896838311 hasConcept C169699857 @default.
- W2896838311 hasConcept C187486625 @default.
- W2896838311 hasConcept C187678412 @default.
- W2896838311 hasConcept C202444582 @default.
- W2896838311 hasConcept C24495805 @default.
- W2896838311 hasConcept C33923547 @default.
- W2896838311 hasConcept C41008148 @default.
- W2896838311 hasConcept C52622258 @default.
- W2896838311 hasConcept C58053490 @default.
- W2896838311 hasConcept C62520636 @default.
- W2896838311 hasConcept C64775481 @default.
- W2896838311 hasConcept C80469333 @default.
- W2896838311 hasConcept C84114770 @default.
- W2896838311 hasConcept C91717678 @default.
- W2896838311 hasConceptScore W2896838311C101973423 @default.
- W2896838311 hasConceptScore W2896838311C105795698 @default.
- W2896838311 hasConceptScore W2896838311C106301342 @default.
- W2896838311 hasConceptScore W2896838311C121040770 @default.
- W2896838311 hasConceptScore W2896838311C121332964 @default.
- W2896838311 hasConceptScore W2896838311C139356082 @default.
- W2896838311 hasConceptScore W2896838311C144901912 @default.
- W2896838311 hasConceptScore W2896838311C152139883 @default.
- W2896838311 hasConceptScore W2896838311C169699857 @default.
- W2896838311 hasConceptScore W2896838311C187486625 @default.
- W2896838311 hasConceptScore W2896838311C187678412 @default.
- W2896838311 hasConceptScore W2896838311C202444582 @default.
- W2896838311 hasConceptScore W2896838311C24495805 @default.