Matches in SemOpenAlex for { <https://semopenalex.org/work/W2896839133> ?p ?o ?g. }
- W2896839133 endingPage "345" @default.
- W2896839133 startingPage "314" @default.
- W2896839133 abstract "Artificial neural networks (ANNs) have been extensively used for the spatially explicit modeling of complex geographic phenomena. However, because of the complexity of the computational process, there has been an inadequate investigation on the parameter configuration of neural networks. Most studies in the literature from GIScience rely on a trial-and-error approach to select the parameter setting for ANN-driven spatial models. Hyperparameter optimization provides support for selecting the optimal architectures of ANNs. Thus, in this study, we develop an automated hyperparameter selection approach to identify optimal neural networks for spatial modeling. Further, the use of hyperparameter optimization is challenging because hyperparameter space is often large and the associated computational demand is heavy. Therefore, we utilize high-performance computing to accelerate the model selection process. Furthermore, we involve spatial statistics approaches to improve the efficiency of hyperparameter optimization. The spatial model used in our case study is a land price evaluation model in Mecklenburg County, North Carolina, USA. Our results demonstrate that the automated selection approach improves the model-level performance compared with linear regression, and the high-performance computing and spatial statistics approaches are of great help for accelerating and enhancing the selection of optimal neural networks for spatial modeling." @default.
- W2896839133 created "2018-10-26" @default.
- W2896839133 creator A5060609967 @default.
- W2896839133 creator A5064702980 @default.
- W2896839133 creator A5073810642 @default.
- W2896839133 date "2018-10-12" @default.
- W2896839133 modified "2023-09-25" @default.
- W2896839133 title "Hyperparameter optimization of neural network-driven spatial models accelerated using cyber-enabled high-performance computing" @default.
- W2896839133 cites W1437335841 @default.
- W2896839133 cites W1547817368 @default.
- W2896839133 cites W1572063013 @default.
- W2896839133 cites W1596599922 @default.
- W2896839133 cites W1608690848 @default.
- W2896839133 cites W1736209534 @default.
- W2896839133 cites W174107858 @default.
- W2896839133 cites W1964168965 @default.
- W2896839133 cites W1965501090 @default.
- W2896839133 cites W1967831808 @default.
- W2896839133 cites W1973749534 @default.
- W2896839133 cites W1977816647 @default.
- W2896839133 cites W1981976602 @default.
- W2896839133 cites W1983335790 @default.
- W2896839133 cites W1983479840 @default.
- W2896839133 cites W1994167151 @default.
- W2896839133 cites W1994544962 @default.
- W2896839133 cites W2007873570 @default.
- W2896839133 cites W2016675181 @default.
- W2896839133 cites W2023318812 @default.
- W2896839133 cites W2024697317 @default.
- W2896839133 cites W2026015077 @default.
- W2896839133 cites W2026879423 @default.
- W2896839133 cites W2027407435 @default.
- W2896839133 cites W2032049683 @default.
- W2896839133 cites W2041588414 @default.
- W2896839133 cites W2045432778 @default.
- W2896839133 cites W2047484866 @default.
- W2896839133 cites W2047884674 @default.
- W2896839133 cites W2052611179 @default.
- W2896839133 cites W2053697364 @default.
- W2896839133 cites W2070188654 @default.
- W2896839133 cites W2079019836 @default.
- W2896839133 cites W2079454091 @default.
- W2896839133 cites W2087576342 @default.
- W2896839133 cites W2089281560 @default.
- W2896839133 cites W2093275097 @default.
- W2896839133 cites W2094153371 @default.
- W2896839133 cites W2098398123 @default.
- W2896839133 cites W2102436825 @default.
- W2896839133 cites W2103705240 @default.
- W2896839133 cites W2111616256 @default.
- W2896839133 cites W2116345859 @default.
- W2896839133 cites W2118898434 @default.
- W2896839133 cites W2125214271 @default.
- W2896839133 cites W2130269771 @default.
- W2896839133 cites W2135617432 @default.
- W2896839133 cites W2135822449 @default.
- W2896839133 cites W2137983211 @default.
- W2896839133 cites W2155300412 @default.
- W2896839133 cites W2155622525 @default.
- W2896839133 cites W2158698691 @default.
- W2896839133 cites W2159915267 @default.
- W2896839133 cites W2165713677 @default.
- W2896839133 cites W2206393201 @default.
- W2896839133 cites W2226402862 @default.
- W2896839133 cites W2274824582 @default.
- W2896839133 cites W2342047525 @default.
- W2896839133 cites W2552942965 @default.
- W2896839133 cites W4229728979 @default.
- W2896839133 cites W4243592922 @default.
- W2896839133 cites W4243836691 @default.
- W2896839133 cites W4246226690 @default.
- W2896839133 cites W4255299209 @default.
- W2896839133 cites W652389623 @default.
- W2896839133 doi "https://doi.org/10.1080/13658816.2018.1530355" @default.
- W2896839133 hasPublicationYear "2018" @default.
- W2896839133 type Work @default.
- W2896839133 sameAs 2896839133 @default.
- W2896839133 citedByCount "19" @default.
- W2896839133 countsByYear W28968391332019 @default.
- W2896839133 countsByYear W28968391332020 @default.
- W2896839133 countsByYear W28968391332021 @default.
- W2896839133 countsByYear W28968391332022 @default.
- W2896839133 countsByYear W28968391332023 @default.
- W2896839133 crossrefType "journal-article" @default.
- W2896839133 hasAuthorship W2896839133A5060609967 @default.
- W2896839133 hasAuthorship W2896839133A5064702980 @default.
- W2896839133 hasAuthorship W2896839133A5073810642 @default.
- W2896839133 hasConcept C10485038 @default.
- W2896839133 hasConcept C111919701 @default.
- W2896839133 hasConcept C119857082 @default.
- W2896839133 hasConcept C12267149 @default.
- W2896839133 hasConcept C124101348 @default.
- W2896839133 hasConcept C154945302 @default.
- W2896839133 hasConcept C41008148 @default.
- W2896839133 hasConcept C50644808 @default.
- W2896839133 hasConcept C81917197 @default.
- W2896839133 hasConcept C8642999 @default.
- W2896839133 hasConcept C93959086 @default.